11 research outputs found

    Aging alters the production of iNOS, arginase and cytokines in murine macrophages

    Get PDF
    The limited amount of information on the primary age-related deficiencies in the innate immune system led us to study the production of inducible nitric oxide synthase (iNOS), arginase, and cytokines in macrophages of young (8 weeks old) and old (72 weeks old) female BALB/c mice. We first evaluated iNOS and arginase inducers on peritoneal (PMΦ) and bone marrow-derived (BMMΦ) macrophages of young BALB/c and C57BL/6 mice, and then investigated their effects on macrophages of old mice. Upon stimulation with lipopolysaccharide (LPS), resident and thioglycolate-elicited PMΦ from young mice presented higher iNOS activity than those from old mice (54.4%). However, LPS-stimulated BMMΦ from old mice showed the highest NO levels (50.1%). Identical NO levels were produced by PMΦ and BMMΦ of both young and old mice stimulated with interferon-γ. Arginase activity was higher in resident and elicited PMΦ of young mice stimulated with LPS (48.8 and 32.7%, respectively) and in resident PMΦ stimulated with interleukin (IL)-4 (64%). BMMΦ of old mice, however, showed higher arginase activity after treatment with IL-4 (46.5%). In response to LPS, PMΦ from old mice showed the highest levels of IL-1α (772.3 ± 51.9 pg/mL), whereas, those from young mice produced the highest amounts of tumor necrosis factor (TNF)-α (937.2 ± 132.1 pg/mL). Only TNF-α was expressed in LPS-treated BMMΦ, and cells from old mice showed the highest levels of this cytokine (994.1 ± 49.42 pg/mL). Overall, these results suggest that macrophages from young and old mice respond differently to inflammatory stimuli, depending on the source and maturity of the cell donors.67168

    Aging alters the production of iNOS, arginase and cytokines in murine macrophages

    No full text
    The limited amount of information on the primary age-related deficiencies in the innate immune system led us to study the production of inducible nitric oxide synthase (iNOS), arginase, and cytokines in macrophages of young (8 weeks old) and old (72 weeks old) female BALB/c mice. We first evaluated iNOS and arginase inducers on peritoneal (PMΦ) and bone marrow-derived (BMMΦ) macrophages of young BALB/c and C57BL/6 mice, and then investigated their effects on macrophages of old mice. Upon stimulation with lipopolysaccharide (LPS), resident and thioglycolate-elicited PMΦ from young mice presented higher iNOS activity than those from old mice (54.4%). However, LPS-stimulated BMMΦ from old mice showed the highest NO levels (50.1%). Identical NO levels were produced by PMΦ and BMMΦ of both young and old mice stimulated with interferon-γ. Arginase activity was higher in resident and elicited PMΦ of young mice stimulated with LPS (48.8 and 32.7%, respectively) and in resident PMΦ stimulated with interleukin (IL)-4 (64%). BMMΦ of old mice, however, showed higher arginase activity after treatment with IL-4 (46.5%). In response to LPS, PMΦ from old mice showed the highest levels of IL-1α (772.3 ± 51.9 pg/mL), whereas, those from young mice produced the highest amounts of tumor necrosis factor (TNF)-α (937.2 ± 132.1 pg/mL). Only TNF-α was expressed in LPS-treated BMMΦ, and cells from old mice showed the highest levels of this cytokine (994.1 ± 49.42 pg/mL). Overall, these results suggest that macrophages from young and old mice respond differently to inflammatory stimuli, depending on the source and maturity of the cell donors

    Modelagem da infiltração de água no solo sob condições de estratificação utilizando-se a equação de Green-Ampt Modeling of water infiltration in soil under stratified conditions using the Green-Ampt equation

    Get PDF
    A infiltração de água no solo é um dos mais significantes processos do ciclo hidrológico. A equação de Green-Ampt (GA) é bastante utilizada na modelagem da infiltração; entretanto, diversos autores alertam para a necessidade de adequação de seus parâmetros de entrada (umidade de saturação (tetas); condutividade hidráulica do solo saturado (K0) e potencial matricial na frente de umedecimento (psi). Neste sentido, avaliou-se a aplicabilidade do modelo de GA, assim como as diversas proposições de adequação de K0 e psi, em um Latossolo Vermelho-Amarelo sob condições de estratificação. Determinaram-se a infiltração acumulada (I), a taxa de infiltração (Ti) e as características físicas do perfil necessárias para a aplicação do modelo. Foram feitas simulações com base na combinação de seis metodologias para a determinação de psi e três para a condutividade hidráulica da zona de transmissão (Kw), verificando-se que as combinações seguintes simularam bem o processo de infiltração: Kw igual a 0,5 K0 associado a psi determinado com base na umidade inicial do solo (psi (tetai)); Kw igual à taxa de infiltração estável (Tie) associado a psi igual à média entre psi (tetai) e psi relativo à umidade de saturação de campo (psi (tetaw)); e Kw igual a K0 associado a psi calculado com base na textura e porosidade do solo (psi(textura)) e Kw igual à Tie associado a psi(textura).<br>Soil water infiltration is one of the most important processes of the hydrological cycle. The Green and Ampt equation (GA) is quite used to simulate the infiltration process, however, several authors showed the necessity of some adaptations in the GA parameters: saturation moisture (thetas), hydraulic conductivity (K0) and mean suction in the wetting front (psi). An evaluation was made of the GA model and of the several correction propositions of K0 and psi, applied in a stratified Red-Yellow Latosol. A soil box filled with soil material belonging to three horizons of the studied soil was used. The accumulated infiltration (I), infiltration rate (Ti), as well as the physical characteristics of the profile needed for the application of the model were determined. Simulations based on the combination among six methodologies for the determination of psi was made and three for the determination of hydraulic conductivity in the transmission zone (Kw). The following combinations simulated well the infiltration process: Kw equal to 0,5 K0 associated to psi relative to the initial moisture content (psi(thetai)); Kw equals to the stable infiltration rate (Tie) associated to psi equal to the mean among psi (thetai) and psi relative to the saturation field moisture (psi (thetaw)); Kw equal to K0 associated to psi calculated with base in the texture and porosity of the soil and Kw equal to Tie associated to psi calculated on the basis of texture and porosity of the soil
    corecore