8 research outputs found

    Relativistic Effects in the Motion of the Moon

    Get PDF
    The main general relativistic effects in the motion of the Moon are briefly reviewed. The possibility of detection of the solar gravitomagnetic contributions to the mean motions of the lunar node and perigee is discussed.Comment: LaTeX file, no figures, 13 pages, to appear in: 'Testing relativistic gravity in space', edited by C. Laemmerzahl, C.W.F. Everitt and F.W. Hehl (Springer, Berlin 2000

    Quantum computation with two-level trapped cold ions beyond Lamb-Dicke limit

    Full text link
    We propose a simple scheme for implementing quantum logic gates with a string of two-level trapped cold ions outside the Lamb-Dicke limit. Two internal states of each ion are used as one computational qubit (CQ) and the collective vibration of ions acts as the information bus, i.e., bus qubit (BQ). Using the quantum dynamics for the laser-ion interaction as described by a generalized Jaynes-Cummings model, we show that quantum entanglement between any one CQ and the BQ can be coherently manipulated by applying classical laser beams. As a result, universal quantum gates, i.e. the one-qubit rotation and two-qubit controlled gates, can be implemented exactly. The required experimental parameters for the implementation, including the Lamb-Dicke (LD) parameter and the durations of the applied laser pulses, are derived. Neither the LD approximation for the laser-ion interaction nor the auxiliary atomic level is needed in the present scheme.Comment: 12 pages, no figures, to appear in Phys. Rev.

    Generation of long-living entanglement using cold trapped ions with pair cat states

    Full text link
    With the reliance in the processing of quantum information on a cold trapped ion, we analyze the entanglement entropy in the ion-field interaction with pair cat states. We investigate a long-living entanglement allowing the instantaneous position of the center-of-mass motion of the ion to be explicitly time dependent. An analytic solution for the system operators is obtained. We show that different nonclassical effects arise in the dynamics of the population inversion, depending on the initial states of the vibrational motion. We study in detail the entanglement degree and demonstrate how the input pair cat state is required for initiating the long living entanglement. This long living entanglement is damp out with an increase in the number difference qq. Owing to the properties of entanglement measures, the results are checked using another entanglement measure (high order linear entropy).Comment: 15 pages, 7 figures, Sub. Appl. Phys. B: Laser and Optic

    Trapped ions in the strong excitation regime: ion interferometry and non--classical states

    Get PDF
    The interaction of a trapped ion with a laser beam in the strong excitation regime is analyzed. In this regime, a variety of non--classical states of motion can be prepared either by using laser pulses of well defined area, or by an adiabatic passage scheme based on the variation of the laser frequency. We show how these states can be used to investigate fundamental properties of quantum mechanics. We also study possible applications of this system to build an ion interferometer.Comment: 9 pages, Revtex format, 5 compressed postscript figure

    Stochastic Phase Space Localization for a Single Particle

    Full text link
    We propose a feedback scheme to control the vibrational motion of a single trapped particle based on indirect measurements of its position. It results the possibility of a motional phase space uncertainty contraction, correponding to cool the particle close to the motional ground state.Comment: 9 pages, 1 figure. Concluding section and figure revised. In press on Phys. rev.
    corecore