93,819 research outputs found
Dynamics of quantum-classical hybrid system: effect of matter-wave pressure
Radiation pressure affects the kinetics of a system exposed to the radiation
and it constitutes the basis of laser cooling. In this paper, we study {\it
matter-wave pressure} through examining the dynamics of a quantum-classical
hybrid system. The quantum and classical subsystem have no explicit coupling to
each other, but affect mutually via a changing boundary condition. Two systems,
i.e., an atom and a Bose-Einstein condensate(BEC), are considered as the
quantum subsystems, while an oscillating wall is taken as the classical
subsystem. We show that the classical subsystem would experience a force
proportional to from the quantum atom, whereas it acquires an
additional force proportional to from the BEC due to the atom-atom
interaction in the BEC. These forces can be understood as the {\it matter-wave
pressure}.Comment: 7 pages, 6 figue
Suppressing decoherence and improving entanglement by quantum-jump-based feedback control in two-level systems
We study the quantum-jump-based feedback control on the entanglement shared
between two qubits with one of them subject to decoherence, while the other
qubit is under the control. This situation is very relevant to a quantum system
consisting of nuclear and electron spins in solid states. The possibility to
prolong the coherence time of the dissipative qubit is also explored. Numerical
simulations show that the quantum-jump-based feedback control can improve the
entanglement between the qubits and prolong the coherence time for the qubit
subject directly to decoherence
Control of tetrahedral coordination and superconductivity in FeSe0.5Te0.5 thin films
We demonstrate a close relationship between superconductivity and the
dimensions of the Fe-Se(Te) tetrahedron in FeSe0.5Te0.5. This is done by
exploiting thin film epitaxy, which provides controlled biaxial stress, both
compressive and tensile, to distort the tetrahedron. The Se/Te height within
the tetrahedron is found to be of crucial importance to superconductivity, in
agreement with the theoretical proposal that (pi,pi) spin fluctuations promote
superconductivity in Fe superconductors
Use of elastic stability analysis to explain the stress-dependent nature of soil strength
The peak and critical state strengths of sands are linearly related to the stress level, just as the frictional resistance to sliding along an interface is related to the normal force. The analogy with frictional sliding has led to the use of a ‘friction angle’ to describe the relationship between strength and stress for soils. The term ‘friction angle’ implies that the underlying mechanism is frictional resistance at the particle contacts. However, experiments and discrete element simulations indicate that the material friction angle is not simply related to the friction angle at the particle contacts. Experiments and particle-scale simulations of model sands have also revealed the presence of strong force chains, aligned with the major principal stress. Buckling of these strong force chains has been proposed as an alternative to the frictional-sliding failure mechanism. Here, using an idealized abstraction of a strong force chain, the resistance is shown to be linearly proportional to the magnitude of the lateral forces supporting the force chain. Considering a triaxial stress state, and drawing an analogy between the lateral forces and the confining pressure in a triaxial test, a linear relationship between stress level and strength is seen to emerge from the failure-by-buckling hypothesis
Quantum Brayton cycle with coupled systems as working substance
We explore the quantum version of Brayton cycle with a composite system as
the working substance. The actual Brayton cycle consists of two adiabatic and
two isobaric processes. Two pressures can be defined in our isobaric process,
one corresponds to the external magnetic field (characterized by ) exerted
on the system, while the other corresponds to the coupling constant between the
subsystems (characterized by ). As a consequence, we can define two types
of quantum Brayton cycle for the composite system. We find that the subsystem
experiences a quantum Brayton cycle in one quantum Brayton cycle (characterized
by ), whereas the subsystem's cycle is of quantum Otto in another Brayton
cycle (characterized by ). The efficiency for the composite system equals
to that for the subsystem in both cases, but the work done by the total system
are usually larger than the sum of work done by the two subsystems. The other
interesting finding is that for the cycle characterized by , the subsystem
can be a refrigerator while the total system is a heat engine. The result in
the paper can be generalized to a quantum Brayton cycle with a general coupled
system as the working substance.Comment: 7 pages, 3 figures, accepted by Phys. Rev.
Entropy and specific heat for open systems in steady states
The fundamental assumption of statistical mechanics is that the system is
equally likely in any of the accessible microstates. Based on this assumption,
the Boltzmann distribution is derived and the full theory of statistical
thermodynamics can be built. In this paper, we show that the Boltzmann
distribution in general can not describe the steady state of open system. Based
on the effective Hamiltonian approach, we calculate the specific heat, the free
energy and the entropy for an open system in steady states. Examples are
illustrated and discussed.Comment: 4 pages, 7 figure
- …