46,901 research outputs found
Inhibitory effects of an aqueous extract of Clitoria ternatea flower on alpha-glucosidase during in-vitro wheat starch digestion
Finger-gate array quantum pumps:pumping characteristics and mechanisms
We study the pumping effects, in both the adiabatic and nonadiabatic regimes,
of a pair of \QTR{it}{finite} finger-gate array (FGA) on a narrow channel.
Connection between the pumping characteristics and associated mechanisms is
established. The pumping potential is generated by ac biasing the FGA pair. For
a single pair (N=1) of finger gates (FG's), the pumping mechanism is due to the
coherent inelastic scattering of the traversing electron to its subband
threshold. For a pair of FGA with pair number , the dominant pumping
mechanism becomes that of the time-dependent Bragg reflection. The contribution
of the time-dependent Bragg reflection to the pumping is enabled by breaking
the symmetry in the electron transmission when the pumping potential is of a
predominant propagating type. This propagating wave condition can be achieved
both by an appropriate choice of the FGA pair configuration and by the
monitoring of a phase difference between the ac biases in the FGA pair.
The robustness of such a pumping mechanism is demonstrated by considering a FGA
pair with only pair number N=4.Comment: 7 pages, 6 figure
A finite difference solution to a mixed boundary value problem for Laplace's equation
Finite difference solution to mixed boundary value problem for Laplace equatio
DC Spin Current Generation in a Rashba-type Quantum Channel
We propose and demonstrate theoretically that resonant inelastic scattering
(RIS) can play an important role in dc spin current generation. The RIS makes
it possible to generate dc spin current via a simple gate configuration: a
single finger-gate that locates atop and orients transversely to a quantum
channel in the presence of Rashba spin-orbit interaction. The ac biased
finger-gate gives rise to a time-variation in the Rashba coupling parameter,
which causes spin-resolved RIS, and subsequently contributes to the dc spin
current. The spin current depends on both the static and the dynamic parts in
the Rashba coupling parameter, and , respectively, and is
proportional to . The proposed gate configuration has the
added advantage that no dc charge current is generated. Our study also shows
that the spin current generation can be enhanced significantly in a double
finger-gate configuration.Comment: 4 pages,4 figure
M-Fivebrane from the Open Supermembrane
Covariant field equations of M-fivebrane in eleven dimensional curved
superspace are obtained from the requirement of kappa-symmetry of an open
supermembrane ending on a fivebrane. The worldvolume of the latter is a (6|16)
dimensional supermanifold embedded in the (11|32) dimensional target
superspace. The kappa-symmetry of the system imposes a constraint on this
embedding, and a constraint on a modified super 3-form field strength on the
fivebrane worldvolume. These constraints govern the dynamics of the
M-fivebrane.Comment: 11 pages, Latex, references and appendix adde
Nonuniversality of the intrinsic inverse spin-Hall effect in diffusive systems
We studied the electric current induced in a two-dimensional electron gas by
the spin current, in the presence of Rashba and cubic Dresselhaus spin-orbit
interactions. We found out that the factor relating these currents is not
universal, but rather depends on the origin of the spin current. Drastic
distinction has been found between two cases: the spin current created by
diffusion of an inhomogeneous spin density, and the pure homogeneous spin
current. We found out that in the former case the ISHE electric current is
finite, while it turns to zero in the latter case, if the spin-orbit coupling
is represented by Rashba interaction.Comment: 1 figur
Inter- and Intra-Chain Attractions in Solutions of Flexible Polyelectrolytes at Nonzero Concentration
Constant temperature molecular dynamics simulations were used to study
solutions of flexible polyelectrolyte chains at nonzero concentrations with
explicit counterions and unscreened coulombic interactions. Counterion
condensation, measured via the self-diffusion coefficient of the counterions,
is found to increase with polymer concentration, but contrary to the prediction
of Manning theory, the renormalized charge fraction on the chains decreases
with increasing Bjerrum length without showing any saturation. Scaling analysis
of the radius of gyration shows that the chains are extended at low polymer
concentrations and small Bjerrum lengths, while at sufficiently large Bjerrum
lengths, the chains shrink to produce compact structures with exponents smaller
than a gaussian chain, suggesting the presence of attractive intrachain
interactions. A careful study of the radial distribution function of the
center-of-mass of the polyelectrolyte chains shows clear evidence that
effective interchain attractive interactions also exist in solutions of
flexible polyelectrolytes, similar to what has been found for rodlike
polyelectrolytes. Our results suggest that the broad maximum observed in
scattering experiments is due to clustering of chains.Comment: 12 pages, REVTeX, 15 eps figure
- …
