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TECHNICAL MEMORANDUM

}
INT120DUCTION	 ^`,:

.A mixed boundary value problem for Laplace's equation	 ^^

arises in the study of the interaction dynamics of fluid and
Iits flexible container. In a recent report Goldman [ 1] studies 	 __^ _.-	 ,^

^	 the longitudinal vibrat-^ions of partially filled ellipsoidal
tanks.. To describe the Goldman work briefly: The fluid is 	 ii
assumed non-viscous, rrotatonal and ncompressible. Trae	 ^`f

^	 ^

perturbations ^^f the tank. and. fluid are assumed small. There
_--	

^^ti
-exists a velocity potential function ^ defined everywhere in

^^the fluid such that	 f`

,^	
,

t^.,
Here v 2 is the three-dimensional. Laplacian. It is assumed

that ^ vanishes on the liquid surface. Using axial symmetry,.
^^

equation (1) is reduced to a two-dimensional form. A finite

'^"^	 difference. analogue. is then employed to compute ^ at a finite,,
w.;	 number of points in terms of a—n (the normal derivative ^t the

^. tank wall). From this the energy integral ^ ^ an is evaluated
..^	 "'

resulting in amass matrix M. fihis M and the corresponding

stiffness matrix are used _to solve the eigenvalue problem for

the frequencies and the mode ,shapes. 	 j

t

.^

^,

^^..

^._

^.:

^.



- 2 -BELLCOMM, INC,

^^
}^€

^s
	 r

4

^^

^^

A finite difference scheme should have the t^ieoretical

property of convergence; that is, if ^ is a solution to the

discrete problem, then ^ shou^.d approach. the tr y^e solution ¢ as
the mesh size approaches zero. The convergence property, thus,

insures that the dscretization process does . indeed provide
a valid mathemat^.cal. approxima ion to the .continuous problem.

In the report [11, the question of convergence was

not specifically addressed. :Cn this memorandum, we discuss a

different finite difference scheme far which convergence is

guaranteed. The proof of convergence. is .achieved by taking tra.e

well-known discrete Green's function approach. The .crucial
fact is that our finite difference scheme leads to a matrix. of
"positive type". This enables us to obtain a discrete maximum

principle ana use. it to estimate various sums in the discrete

Green's function,whch are i3r t^^^:n used to estimate a bound
.for the error.

FLNITE DIFFERENCE	 '

Wherever possible we shall follow the same notation

as in [1]. We take full advantage of axial symmetry. Thus
K

for the hemispherical . tank., one. need work with only a
quadrant of a circle, and similarly for other geometires.

Accordingly, Figure 1 shows a portio^i of the vertical axial.

cross-section. 0' is the center of the ellipse (circle) and

the origin. of coordinates O is taken to be the axial point on

the surface of the f1^t?d. OA represents. the depth of the fluid

.....and OB is the radius u . ;`' the disc . forming the free surface. z

and a are respective^.y the normalized (downward) vertical and

horizon al coordinates in the OAB plane...

F

^.

'^.	 ,.

u

m.
w

U
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FIGURE 1

For the sake of deziniteness we now assume that j^

our grid is such. that we have uniform mesh-widths d in the

z-direction and h in the. ?^-direction_. Later we comment on	 ^	 '
`	 how to extend our results to non-uniform spacing. Without

loss of generality wealso :assume that d < h. In practice	 y

a variable mesh wouTdallow one to increase or decrease the

number of boundary points in relation to the number of 	 t

interior points. In Figure 1 we have seven boundary points

^•
and eleven in erior points. Variable mesh spacing will also 	 +

'^	 permit one to choose. the boundary points before .hand (.e.g.,
^.:

at equal intervals alo^^g the arc) and to avoid the peripheral

interior ;points (4, 8, 10, ll in Figure 1) getting too close

	

`"	 to-. the .boundary or even abolishing tie peripheral points . Th,

	

"r^ ^	 price one pays for imposing a variable mesh grid: is, of .course,^,	 <;

^=-^^	 a .complicated five point operator in the interior, involving ^`

^,_	 increased computation at every meG^ point. This is not an

i`	 insurmountable problem, however.

fi	 ..

t

':.
^.	

^	 ...

t.
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Let beR	 the xegion comprising the fluid. and R

, its. closure.. Referring now to the. two--dmensiona'1 grid^,^.

^f,^ diagram such as Figure 1, we let D be the sit of mesh points

in Rand D be the- set on the. boundary.	 Thus in Figure	 ,

^Y
the .;interior points aze numbered 1 to 11 and the boundary

points are numbered 12 to l8.	 Mor,eover, we occasionally

"^ have. to distinguish between the "peripheral" points and

'^	 ^ the "regular" points of D.	 A per^^heral point is one which
^^ has at least one of its four "neigr^bors" in D.	 Thus in

Figure 1, the ^aoints numbered 4, 	 8,	 10,	 11 are peripheral	 is
points.	 This distinction is irrele^ ►ant when working with	 ^.

non-uniform mesh. We have excluded the . grid points on the	 ^'...^
fluid surface

^^^.
.since ^	 0 there.

^ Laplace's
;t

equation now takes the form (by axial.

,v

symmetry)
^

i
^!
^F

S

,;

The boundary conditions are ^ _ 0 on z = 0 and 
9.n = V^

1) at

	

,^,' 	 the tank. wall. Thus we assume that the outward normal derivative
.', •	 7

	

r.^	 3n is prescr^.bed on D.

	

t	

l7	
..

Let us first consider -a regular point x of D. For

	

.^.	 any function u defined in D (D = DUD} , we write.
^..

u^^ (x) _ -^- {u (x-h) - 2u (x) + u (x+h) }	 (3)

	

^:.. ^	 h

	

? ^ ^^	 Here we use x as a vector representing the . mesh point

	

,^^	 and h is the vector (O , h) in (z , a) coordinates . We also write t,.	 _

r^
(d,0). If ^ is assumed to be C 3 (R) (.e., thrice continuously

differentiable in R), then it is clear that

`_
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^
4

n

^1J^ fix)	 '^	 ^^^ lx)	
+	 M3h (4)

^^^ where M3 ^ max 1D1^^,D1^ being any	 th derivative of ^ in R.
i=0,1,2,3 f

,,

}^

'.i,

1

d

^^

,:,:

and for ^ ^ 0 , I{;
n 'r'

^"
^... ^	 ^ —

^'l'

j Since

^':. lime ^ h
- ^	 '	

(for a = 0) (7)
11

^-^0 a	 as

^€	 _ ^^

^

.t	 r

. ^

^` ~^
7. ^}

we use	 (3) (int; teed of (6)) in approximating ^ ^ ^ at the axis
'" points.	 Alp o axi^il symmetry is used for these. points. in the

obvious manner.

-^

?^

For a peripheral point, such as' in Fiqure 2, ,we
.	 ^;

-b

define - ^ .F
î 	 -

.,
;^

.,.,
as

ti ;,

(8)

'.

t

.,

^
Z

S

1

:.

d	 (1+S) E^

,..	
t

-.

'

-J

-^
i

tkk

E'

^:

{{

ri

_.^	 _.
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`	 ^	 ^
1 ^
	 (x) =	

1	
—^' {$ (x+ah)

^;	 a	 ^h
-	 C1 - a 2 ) ^ ^X) -	 a 2 ^ ( x-h) }	 (1U)

a+a
`^,

L

r

j,;

^^

t^

ti

x ^^

`

t

x_h

x^	 ^
^.	 ',

x+a h

7'

#Y

"^^
x

x+Qa ^
}f

l!

,'

j^.'

{
^.'.

FIGURE 2
^"

^`^,^

ji
I

^^

T

^^ To justify these detinitiohs, let us look at equation (8)-in

^'

detail..	 Ex andn	 tip	 g ^ (x+ah) and ^'^ (x-h) in terms of Taylor series i

about. the point x,we have ^'

=,

3^t.	 _.

^^	 ^
^L ^ (x+ah)	 _ ^ (X)	 + ah^^ (x)	 +

'^	 2(a2)	
^a,\ (X)

ti	 3

+	 (a 6 )	 ^aa^ (X ^ )	 k^

^r
h 2 h 3_

-'

^^

., Adding a times	 the second to the first we_ obtain_ '

M

,^ (. x+ah)	 + ^.^ (x-h)	 =	 (1+a) ^ (x)
+ 2 

Ca+a2) ^^^ (x)	 +	 e ^	 ^('

^,

,^

-^^
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where a is a third girder error term. Thus defining the quantity

^ ^ (x) by equation (8) implies

= 0(h).

1 ^,Similarly Z.Z. (x) approximates ¢ ZZ (x) and ^ ^^ (x) approximates	 t
;.
3`

1 ^ ^ (x) wi th 0 (h) error.Y'	
!

1'

Equation (8) reduces to (3) when a = 1. Similar remarks.
^'ho d far (9) and (10) vs-a-vis e (5) and (6) . Thus all typPS of 	 ^

eri heralp p	 point (and indeed regular .interior points) are covered

by equations (8) , (9) , anc^ (10) . Now if we wr_ ite
^r

r	 Fi	
L^ (x) = a ^a (x) + ^^^ (x) + ^zz (x)	 (ll)	 ^^	 i

._
^, F

1	
,,	 ,,

;_	
L^ (x) = ^ ^a (x) + ^'a^ (x) ^ ^ZZ (x) ^ x eD	 (l^)	 '

k;	 ^
^:.

then for ^EC3 (R) , the following inequality is true: .	^'
.^.

i
%̂: 1

	

^L^ - LEI 4 Klh.	 f,13)

,.^.
,^__^	 Here and in the sequel, K 1 , K2, .. , w^11 be used to represent 	 '
^^•`:	 constants which are independent of d. and h but may. depend on M3:._
^^.,.	 x

'	 On the boundary we use a first order approximation to	 1	 ^

the normal derivaf:ive. A typical case. is shown in Figure s. ^ 	 ^ __
^._	 ^	 _

.: -'

Y	 ^

Y	

``

	 t

3:

r ^	 w^
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^r

I

.w ^ r	 r ^	
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i^ {.

i

^

^,
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FIGURE.3

33̂ ^^

^'
C^^

r

iî

^'p

I^ d l ^ is
iy

defined by

a

r^
^^

e

^ 1 ^ = _	 (14)

M	

T4 .

1

^^ where w + p = 1 and dl is as in Figure 3	 then it is easily
t

^^erified that

^^
t: _^,

a	 x	 f

^x.

We note that. equation (14) covers all types of boundary points.
^^

At the bottom point, e.g. , we have	 ^„^	 ^^

r`
^.	 ,^

^e

x _,

.-	 _ k. -	 ._....^	 ^,
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Thus the continuous problem

-L^ = 0	 in the liquid

V (l ^	 at Lhe tank. wall	 (16^

0	 on liquid surface,	 ^
s,^

s dis creti zed by
/_t

J^

i
^'^t

9
i;	 ,.

-^L^ = 0	 in D
^	 ;
,,

iis
(17) ^`^

^^
a 1^	 V (l	 on U

^̂ z
^

^'
Y,1^

^^ f -	 ' The. information ^ = 0 on the fluid surface is

incorporated ^.n ^ when writing equations for points of D
^f

which are at depth d below the free surface.. 	 We shall refer

, x ' to the nxn coefficient matrix: of the 	 inear system (17) by A, ,

M_ETHOp ^f
3

The i3ea. of the. rnethod is to solve	 (17) for ^ on ^^
D in terms of V (^') and then evaluate- the energy integral.

^^ ^'an as a discrete sum over the points of D 	 The result 3
,•	

S

(l)	 (1)would. be a. r^^aadratic ..form.	 l	 mid Vl	 V^	 , where M = {mid }
(_..+.

^^`-	 ^ l ,' ^

l

M^ may be assumed to be symmetric.	 This M wouldbe the matrix ^
;. used'to compute the na ural frequencies and mode shapes. }

Let n	 n	 respectively be the. number of interior1	 2 ^E...
and ^oundarl^ paints.	 Let us rewrite equation (17) in the
form

^
_	 ;' -

...	 _
.-	 ^_	 __^

^.	 _
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Al 	B 1 	4)1
	

0
A^

B2	 A2	 42	 V(1)

are square matrices of order n 	 andIn equation	 (18) A1 and A 2,
	

1
n2 respectively.	 2 is the n -vector giving the n 2 boundary
values of	 The rest of the quantities then are self explanatory.
If A 1

-1 	 A2 l exist, then

1
--A11B12'

.'	 . and

= A-1 ( V (1)	 - B CP)
2	 2	 2	 1

}

- A 2 1 (V (1)	 + B2 A1 1 B1 2)

. Thus if

C	 (I - A_l B	 A-1 B ]2	 2	 2	 1	 1
r
f

is invertible, then o 2 is obtained from

.^ = C_1 A-1 
V (1	 (19)2	 2	 2

4 Once 02 is obtained, the approximation , to the energy in' egra', -
nts of the

F

b	 evaluating the discrete sum at the same n2Y	 g	 po

boundary yields- the crass matrix M.
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We observe here that in practice, A 2 in (18) is

in fact an n 2 x n 2 diagonal matrix for reasonably smooth

boundaries and is certainly the case for the simple

rr. boundaries such as the ellipsoid. 	 This is easily seen

from	 (14) .	 (In Figure 1, rig = 7.) 

CON17ERGENCE
1i.

We shall now give a proof of convergence of the

finite difference solution to the continuous solution.

Specifically, we shall prove, with reference to equations +,

(16)	 and (17), the following theorem. ^?
1?

Theorem
i}

The error E (x) = ((x)	 - ^ (x) ,vxED is uniformly
E

bounded and is given by 1

max	 a (x)<_ K3 (20)
i x ED

1 {

The proof will be developed in several lemmas below. 	 It

will be convenient for the reader to refer to Figure 1 and

- the corresponding matrix A presented in the Appendix when

„p reading through the proof.
t

r,

,Lemmil 1	 If

-	 U (,x)	 :	 0	 ,	 xeD (21)

S U (x)	 0	 xeb (22)

then-,
k

4

U(x) - 0	 in D. (23)
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a
Proof

Suppose there is a negative minimum at x 0 eD.	 Then
if x0 is one of the points on the "top row"	 (such as 1,	 2,	 3,
4 of Figure 1)	 then (21) gives

1
i

3

aQ U (x0) ai	 U (xi:!	 0	 (24)
3.'

1- 1	 t;

z`

But by the definition of L, we have ai	 >	 0	 for-	 i	 =	 o f	 ...,	 3	 i
and xi	 (i = 1, 2,	 3)	 are the three neighbors of x0 .	 Also
is such that

i'

3 j
a0 -

`
ai	 >	0{

..
=1

,
,i

t Thus if we rewrite	 (24) as

3	 3..
(a0	ai)	 U(x0 )	 + ai ( U(x0 )	 - U(xi))	 3 0	 (25)

i=1	 i=1

then we have a contradiction.

If x0 is any other type of point in D, then x0 has four
neighbors.	 Now

a0	 a1
0

and in place of (25) We now have



y

a
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r-
4	 4

(a0 -	 a)	 U (x0 )	 +	 ai ( U (x4 - U (xi ))	 =	 0

i =1	 i=1

Again ai > 0 and thus we have a contradiction. From the
construction of the 6 1 operator in (14) we see that a negative

minimum on D is not possible either. 	 Hence we have the lemma.

Definition

For yeD define R(x,y) by
lti

. -L R(x,y)	 = h	 d	 d (x,y)	 , xeD	 is
z

(26).
j^

ti

d l	 R(x,y)	 = h	 b (x,y)	 , xeD

where
T 1

1 ;

0	 ifx+y
7 a (x,y)

1	 if x 

ti
and h is a quantity of order h depending on the choice of x.

R(x,y)	 is the so-called discrete Green's function.	 R(x,y)
exists because A is nonsingular.

Lemma 2

R(x,y)	 0	 V x,y E D

Proof

Lemma l states that AU = 0 implies U 3 0.	 But	 (26)

^e

implies`



r

i

>
r

i i

r
BELLCOMM, INC. - 14 -

tC AR = Q	 (27)

where R is an nxn matrix and Q is a diagonal matrix with diagonal

entries
ti

1, 1/h or 1/hd.	 Hence AR	 0 and therefore R = 0.
i.

Lemma 3 it

For every grid function 	 U(x), we have
z

I
r

u(x) _ hd R (x, y ) [-L U (y) ] !
y eD

n	 w

t (28)
,

f h+ R (x,y) [d l	U (y))
L	 ., yeD

Proof

Let the right hand side be W(x). 	 For xeD

f -^LW (x) = hd	 -	 [R ( x , y ) l [-L U (y)]xyeD
i

ti
h	 hx [R(x^y)+	 -	 ] [a 1 U (y) ]ry'

yeD

implies

-hW (x)	 -L U (x)
xx

I'1
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from the definition of R(x,y). The subscript x of L x is to

point out that the operation is with respect to the argument

X.
Similarly if xcb, we have

a 1 W (x) = 6 1 U (x}

Thus we have

-L (W (x)	 U (x)) = 0 , xeD

f

	

d l (W (x) - U (x)) = 0	 , xeD.

Lemma 1 applied to W (x) - U (x) and then to (W (x) - U (x) J

gives W'(x) = U (x) and the lemma.

Lemma 4

There exists a function ^eC 3 (R) which is non-negative
in R

-L^	 2	 in R	 (29

and

4	

an	 2 on tank wall	 (30)
r

,l
r

n
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4=

E Proof
It is clear that if	 (29) and (30)	 are satisfied by

a function ^ then by adding a sufficiently large constant one

could always get a non-negative function with the same properties

a,	 A general existence proof for arbitrary regions is not

' available.	 However, we shall exhibit a ^ explicitly which is

acceptable for hemispherical tanks and which can therefore be
modified to ellipsoidal tanks.

We versfy that, with respect to Figure 1, the function

I defined by
rE

C
3
{a

2
 -	 3z

2
 + C

1
 	 + C

2
}	 (31)

I^

( for appropriate choice of constants C l , C 2 and C 3 satisfies the

conditions of the lemma.	 We have

1
2C3

{

^' a	
2C3

Z Z	 -6C3.

u

Hen ce

-L	 2C	 for	 (z , A)	 in R.3

Also	 (Figure 4)

anL ` 	C3{2a sine - 6z cose + C1 core}IR 	 (32)
R
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FIGURE 4

Equation (34) is easily verified if one expresses * in
terms of polar conditions (r,e)	 about 0 1	 and uses the

lr
fact that n -	 a on the^r boundary

is

The right hand side of	 (32)	 can be rewritten

C 3 {C 1 rose - 8r cos 2 e	 + 6100 1 1cose +	 2r)lk.

Thus if C	 is taken to be the number {810 1 AJ 610011)	 then

an >	 210'AIC 3R

MOMO



r
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Hence taking C 1 to exceed eight times the radius of the
hemisphere and C3 to exceed the reciprocal of the radius
guarantees ^ with an greater than two. Also it is clear
that taking C2 to be any constant exceeding the maximum
value of 3z 2 , for all z in R, is sufficient to guarantee a
non-negative	 The adjustment required for the elliptic

case is simple enough and shall not be discussed here.

a'

Lemma 5
li

For sufficiently small h

-1 (x)	 1 , xED

d l (x)	 1 , XE6

Proof

According to equations (13) and (15), there are constants
K1 and K2 independent of h such that

i^ L,y (x)	 = L^ (x) - Klh for all x in D }

:
Y 

(x) = ^ (x) - K2h for all x in D

Thus when h is sufficiently small, Klh and K2h would be smaller

than unity.	 An application of lemma 4 now yields the result.
ii

Lemma 6

hd	 R(x,Y) K4
YED

x



n^
-
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y

ti

h	 R(X,y)	 K4
yeD

f Proof
;e

Applying Lemma 3 to the function ^(x), we have

(x)	 = hd	 R (x,y)	 [-L ► (y))

,.
s.

'..
r yeD

+ h	 R(x,y)	 [a l b (y) ] •
yep

r

Lemma 5 now yields
1F

(x)	 = hd	 R (x,y)	 + h	 (x,y)r ^	 R	 . ,
y eD	 yeD R

.' We therefore have, for all xeD,

r

h 	 R (x, Y)	 < max ^ (x)	 = K
yeD	 xeR

a

rV

h	 Rx	 <max	 x	 = K

Yv
yeD	 Xe R	

4

Note that in the case of a hemisphere, with unit--

radius we may take K4 = 5. r

G

i

Ah 	 RAM,	 SAM
__.
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Proof of Theorem

t, Apply Lemma 3 to the function

c(x)	 hd	 R(x,y) [-^Le (y) l	 + h	 R(x,y)	 6	 e (Y).	 (33)
yrD yeD }

r^ }

By the triangle inequality

j

}

r and by definition y=

ti
LO - 0.

Also

al (^-^	 -	 s l y - an + 

an 1

These together with (13) and (15) fed into (33) yield

(E (x) l < hd	 L	 R (x,y) [Klhl + h	 R (x ,y) [FZhJ	 •
YE D YeD
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Applying Lemma 6 to this inequality proves the theorem.
Conclusion

The reader may verity that the proofs all remain
valid for a completely variable grid spacing and

IE(x)I <Kh

is true provided h is now taken to be the maximum of all hi,
di, the variable grid widths.

We also emphasize that the proofs here hold for a {

large class of surfaces and are not limited to the hemisphere
or the ellipsoid.	 The only requirement is that the surface is
such that Lemma 4 holds. 1

With reference to equation (19) , J.t should be noted
that we have not proved that C 2 is invertible.	 We gave i t there
as a simple practical procedure. 	 Our proofs, .however, do not

-; depend on this equation since we considered the whole matrix A.
This matrix has several pleasant properties,which we had no need

E

to mention explicitly. 	 For example, A-_1 exists with every element
positive.	 Al of (16)	 is also of positive type [2].

t

V. Thuraisamy

1022-VTC-mef	 S. C. Chu
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