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ABSTRACT

In this memorandum we present a finite difference
scheme for the solution of a mixed boundary value problem for
Laplace's equation. This problem arises in the analysis of
longitudinal vibrations of tanks, partially filled with fluid.
The discretization process presented permits both equal-size

and variable mesh grids. The convergence property of the

process is proved.



BELLCOMM, INC,
955 L'ENFANT PLAZA NORTH, SW.  WASHINGTON, D.C. 20024

suBicT: A Finite Difference Solution to a DATE:  pecember 28, 1970
Mixed Boundary Value Problem for
Laplace's Equation - Case 320 FROM: V., Thuraisamy
S. C. Chu

TM-70~1022-20

TECHNICAL MEMORANDUM

INTRODUCTION

A mixed boundary value problem for Laplace's equation
arises in the study of the interaction dynamics of fluid and
its flexible container. 1In a recent report Goldman [1l] studies
the longitudinal vibrations of partially filled ellipsoidal
tanks. To describe the Goldman work briefly: The fluid is
assumed non-viscous, irrotational, and incompressible. The
perturbations of the tank and fluid are assumed small. There
exists a velocity potential function ¢ defined everywhere in
the fluid such that

v = 0 (1)
Here Vz is the three-dimensional Laplacian. It is assumed
that ¢ vanishes on the liquid surface. Using axial symmetry,
equation (1) is reduced to a two-dimensional form. A finite
difference analogue is then employed to compute ¢ at a finite
number of points in terms of aﬁ (the normal derivative at the

tank wall). From this the energy integral j’ d 33 is evaluated '

resulting in a mass matrix M. This M and the corresponding
stiffness matrix are used to solve the eigenvalue problem for
the frequencies and the mode shapes. |
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A finite difference scheme should have the theoretical
property of convergence; that is, if ¢§ is a solution to the
discrete problem, then § should approach the true solution ¢ as
the mesh size approaches zero. The convergence property, thus,
insures that the discretization process does indeed provide
a valid mathematical approximation to the continuous problem.

In the report [1l], the question of convergence was
not specifically addressed. In this memorandum, we discuss a
different finite difference scheme for which éonvergence is
guaranteed. The proof of convergence is achieved by taking the
well-known discrete Green's function approach. The crucial
fact is that our finite difference scheme leads to a matrix of
"positive type". This enables us to obtain a discrete maximum
principle and use it to estimate various sums in the discrete
Green's function,which are in tuyn used to estimate a bound
for the error.

FINITE DIFFERENCE
Wherever possible we shall follow the same notation

as in [l]. We take full advantage of axial symmetry. Thus

for the hemispherical tank, one need work with only a

gquadrant of a circle, and similarly for other geometries.
Accordingly, Figure 1 shows a portion of the vertical axial
cross-section. O' is the center of the ellipse (circle) and
the origin of coordinates O is taken to be the axial point on
the surface of the fluid. OA represents the depth of the fluid
and OB is the radius .., the disc forming the free surface. =z
and ) are respectively the normalized (downward) vertlcal and
horizontal coordinates in the OAB plane.
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o'

FLUID LEVEL

FIGURE 1

For the sake of definiteness we now assume that
our grid is such that we have uniform mesh-widths d in the
z-direction and h in the A-direction. Later we comment on
how to extend our results to non-uniform spacing. Without
loss of generality we also assume that d < h. In practice
a variable mesh would allow one to increase or decrease the
number of boundary points in relation to the number of
interior points. 1In Figure 1, we have seven boundary points
and eleven interior points. Variable mesh spacing will also
permit one to choose the boundary points before hand (e.g.,
at equal intervals along the arc) and to avoid the peripheral
interior points (4, 8, 10, 11 in Figure 1) getting too close
to the boundary or even abolishing the peripheral points. The
price one pays for imposing a Variéble;mesh,grid is, of course,
a complicated five point operator in the interior, involving |
increased computation at every mesh point. This is not an
insurmountable problem, however.
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Let R be the region comprising the fluid and R
its closure. Referring now to the two-dimensional grid
diagram such as Figure 1, we let D be the set of mesh points
in R and D be the set on the boundary. Thus in Figure 1,
the interior points are numbered 1 to 11 and the boundary
points are numbered 12 to 18. Moreover, we occasionally
have to distinguish between the "peripheral" points and
the "regular" points of D. A peripheral point is one which
has at least one of its four "neighbors" in D. Thus in
Figure 1, the points numbered 4, 8, 10, 11 are peripheral
points. This distinction is irrelevant when working with
non-uniform mesh., We have excluded the grid points on the
fluid surface since ¢ = 0 there.

Laplace's equation now takes the form (by axial
symmetry)

1 L -

T8t t e, =0 (2)
The boundary conditions are ¢ = 0 cn z = 0 and %% = V(l) at
the tank wall. Thus we assume that the outwardtnormal derivative

9¢

3n is prescribed on D.

i)

Let us first consider a regular point x of D. For
any function u defined in D (D = DyD), we write

GAA(x) =’;% {u(x-K) - 2u(x) + u(x+h)} (3)

Here we use x as a vector representing the mesh point
and i is the vector (0,h) in (z,)) coordinates. We also write
d = (4,0). If ¢ is assumed to be C°(R) (i.e., thrice continuously
differentiable in R), then it is clear that .
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61, (%) = ,, (x) + Mzh (4)
i i . . th : . L=
where M, < max |[D"¢|,D"¢ being any i~ derivative of ¢ in R.
3= .2
i=0,1,2,3
3 =2 ) - -3 5
¢,,(x) = = {¢(x+d) - 2¢(x) + ¢(x-d)} (5)
2z 3
and for A % 0,
% &l(x) = 5%—{¢(x+ﬁ) - ¢ (x-K)} . (6)
Since
1im )

y20 5 = $aa (for » = 0) (7)

we use (3) (instead of (6)) in approximating % ¢, at the axis
points. Also axial symmetry is used for these points in the
obvious manner.

For a peripheral point, such as in Figure 2, we

define
~ 2 ¢ (x+ah) , v i
¢,, (x) = {- (1+1/a) ¢ (x) + ¢ (x-h)}
A ;??i+a) a (8)
o, () = 2 (B )4 () 4 o=} L (9)

2z a2 (1+8) B
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1 1 1 Ny (a2 - a4 (x-B 10
T 6, (x) = 3% ;:25 {¢ (x+ah) (1-a“) ¢ (X) - a“¢ (x-h)} (10)

_ FIGURE 2

To justify these definitions, let us look at equation (8) in

detail. Expanding ¢(x+aﬁ) and ¢(x-ﬁ) in terms of Taylor series
about the point x,we have

(a%)z
| (X) + = o5y, (x')

o (x+all) = o (x) + &B¢A(x) +82ly

N2 49
¢ (x=K) = ¢(x) - %¢A(X) + %_ baa (¥ - %T'¢AAA(X )

Adding o times the second to the first we obtain

2

s (x+aB) + ad (x-B) = (1+a)é (x) + %F (a+az)¢Ax(x) + ¢
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where € is a third order error term. Thus defining the quantity

$AA(X) by equation (8) implies

h 2 ] ] ;

by (X)) = 05y

it

0 (h).

Similarly ;zz(x) approximates ¢zz(x) and % ¢A(x) approximates

% ¢A(x) with O (h) error.

Equation (8) reduces to (3) when o = 1, Similar remarks
hold for (9) and (10) vis-a-vis (5) and (6). Thus all types of
peripheral points (and indeed regular interior points) are covered

by equations (8), (9), and (10). Now if we write

Lo (x) £ 3 6, (%) + 6., (%) + ¢, (x) (11)
Lo(x) = 36, (x) + ¢, (x) + ¢ (x), xeD (12)

then for ¢ec3(§), the following inequality is true:

Lo - Lo| < xn. (13)

Here and in the sequel, Kl’ K2, ... will be used to represent
constants which ar¥e independent of d and h but may depend on Mj.

On the boundary we use a first order approximation to
the normal derivative. A typical case is shown in Figure 3.
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FIGURE 3

If 6,¢ is defined by

$(x) = {wp(x,) + pé(x,)) »
, 1 2 (14)

0 ¢ =
1 d,
where w + p = 1 and 4, is as in Figure 3, then it is easily
verified that
] 2 |
200 _ 5 s(x)| < K,h. - (1s)

We note that equation (14) covers all types of boundary points.
At the bottom point, e.g., we have
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e (x) = ¢ (x=d)
61¢’ (X) = a "

Thus the continuous problem

-L¢ = 0 in the liquid
%% =y at the tank wall (16)
$ = 0 on liguid surface,

is discretized by

~%o = 0 in D

_

(17)
on

O;
H
o
|
Ce

The information ¢ = 0 on the fluid surface is
incorporated in I when writing equations for points of D
which are at depth d below the free surface. We shall refer
to the nxn coefficient matrix of the linear system (17) by A.

The i?i? of the method is to solve (17) for ¢ on

D in terms of V and then evaluate the energy integral

jP @%% as a discrete sum over the points of 65 The result
S

would be a quadratic form ‘Lu mij Vi(l><vj<l), where M = {mij}
1,3
may be assumed to be symmetric. This M would be the matrix
used to compute the natural frequencies and mode shapes.
Let n,, n, respectively be the number of interior
and houndary points. Let us rewrite equation (17) in the
form
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In equation (18) Aq and A, are square matrices of order n, and
n, respectively. ¢, is the n,-vector giving the n, boundary

values of ¢. The rest of th2 guantities then are self explanatory.
1 -1 -

If Al- , A, " exist, then
_ -1
1= -A;7 By ¢,
and
= -1 ,,(1) _
%, = AT (V By? )
_ a=1,,(1) -1
= AZ (v + BZAl Bl 4’2) .
Thus 1if
I -1
C2 = [I AZ B2 Al B1]

is invertible, then ¢, is obtained from

(19)

Once ¢, is obtained, the approximation to the ensrgy integra?,
by evaluating the discrete sum at the same n, points of the

boundary yields the mass matrix M.
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We observe here that in practice, A2 in (18) is
in fact an n, X n, diagonal matrix, for reasonably smooth
boundaries and is certainly the case for the simple
boundaries such as the ellipsoid. This is easily seen
from (14). (In Figure l,nz = 7.)

CONVERGENCE
We shall now give a proof of convergence of the

finite difference solution to the continuous solution.
Specifically, we shall prove, with reference to equations
(16) and (17), the following theorem.

Theorem

The error e(x) = ¢(x) - ¢(x),vxeD is uniformly
bounded and is given by

max |e(x)| < Kjh
XeD

The proof will be developed in several lemmas below. It

will be convenient for the reader to refer to Figure 1 and

the corresponding matrix A presented in the Appendix when
reading through the proof.

Lemma 1 If

-T U(x) %0 , XeD
§ U(x) > 0 , XeD

then

Uéx) =2 0 in D.

(20)

(21)

(22)

- (23)
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Proof

Suppose there is a negative minimum at XgeD. Then
if X is one of the points on the "top row" (such as 1, 2, 3,
4 of Figure 1) then (21) gives

3

a, Ulx,) - Z a; Ulx;) %0 . (24)
i=1

But by the definition of ﬁ, we have a; > 0 for i =0, ;.., 3

and x; {i =1, 2, 3) are the three neighbors of X,. Also L
is such that
3
ao - Z ai > 0 .
i=1
Thus if we rewrite (24) as
3 3 '
(g = ) ay) Ulxg) + Y a,(U(xy) - Ulx,)) * 0 (25)
i=1 i=1

then we have a contradiction.

If X, is any other tyvpe of point in D, then xo‘has four

neighbors. Now

a |
a, - 2: a; = 0

i=1

and in place of (25) we now have
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4 4
(ag = 9 ay) Ulxg) + ) ag(Ulxg = Ulx)) %0 .

i=1 i=1l

Again a; > 0 and thus we have a contradiction. From the
construction of the §, operator in (14) we see that a negative

minimum on D is not possible either. Hence we have the lemma.

Definition

For yeD define R(x,y) by

- R(x,y) = h"ld-1 §(x,y) , XeD
(26)
v-1 .
51 R(x,y) = h §(x,Y) » XeD
where
0 if x# vy
§ (x,y) =

Y
and h is a quantity of order h depending on the choice of x.

R(x,y) is the so-called discrete Green's function. R(x,y)
exists because A is nonsingular.

Lemma 2

R(x,y) 2 0 ¥ X,y ¢ D,

Proof

Lemma 1 states that AU * 0 implies U 2 0. ,Bgt (26)

implies
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AR = Q (27)

where R is an nxn matrix and Q is a diagonal matrix with diagonal

n
entries 1, l/ﬁ or 1/hd. Hence AR * 0 and therefore R % 0.

Lemma 3
For every grid function U(x), we have
U(x) = hd Z R(x,y) [-L u(y)]
yeD
(28)
y 2: .
+ h . R(x,y) [, uly)]
yeD
Proof
Let the right hand side be W(x). For xeD,
-IW(x) = hd Z - ﬁx[R(x,y)][-ﬁ ul(y)]
yeD
A
+ h 2: - ﬁx[R(x.Y)lldl uy)])
f yeD
implies

-tw(x) = -1 U(x)
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from the definition of R(x,y). The subscript x of ﬁx is to
point out that the operation is with respect to the argument

X.
Similarly if xeD, we have

61W(x) = & U (x)

Thus we have

-ﬁ(W(x) - U(x)) =0 , xeD
8§, (W(x) = U(x))=0 , xeb.

Lemma 1 applied to W(x) - U(x) and then to -[W(x) - U(x)]
gives W(x) = U(x) and the lemma.
Lemma 4

There exists a function ¢eC3(§) which is non-negative
in R;

-Ly * 2 in R | » (29)

and

3 . - : : :
3% > 2 on tank wall . (30)
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Proof

It is clear that if (29) and (30) are satisfied by
a function ¢ then by adding a sufficiently large constant one
could always get a non-negative function with the same properties
as y. A general existence proof for arbitrary regions is not
available. However, we shall exhibit a y explicitly which is
acceptable for hemispherical tanks and which can therefore be
modified to ellipsoidal tanks.

We verify that, with respect to Figure 1, the function
. defined by

Y = c3{‘A2 - 32% 4 C,z + C,} (31)

for appropriate choice of constants Cl' C2 and C3 satisfies the
conditions of the lemma. We have

% vy = 2C3
Var = 2C3
wzz = -6C3.
Hence
-LW = 2C3 for (z,x) in R,

Also (Figure 4)

AR g - - AN
|, = C3{21 sing - 62 cos6 + C; coso}|p

(32)
R 1
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FIGURE 4

Equation (32) is easily verified if one expresses y in
terms of polar conditions (r,0) about 0' and uses the

9 _ 3 .
fact that 3n = 3¢ o the boundary R.

The right hand side of (32) can be rewritten

C;{C, cose - 8r cos®e + 6]00'|cose + 2r)

R

Thus if C; is taken to be the number {8|0'A| - 6]/00'|} then

)

<

QU

n

. > 2|o'alc, .
R 3
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Hence taking Cl to exceed eight times the radius of the
hemisphere and Cy to exceed the reciprocal of the radius
guarantees y with %% greater than two. Also it is clear
that taking C, to be any constant exceeding the maximum
value of 322, for all z in R, is sufficient to guarantee a
non-negative y. The adjustment required for the elliptic

case is simple enough and shall not be discussed here.

Lemma 5
For sufficiently small h
-ﬁw(x) 21 , xeD
81V (x) 21 , xeb .
Proof

According to equations (13) and (15), there are constants
K, and K, independent of h such that '

ﬁw(x)

Ly (x) - th for all x in D

= 2V - in O
slw(x) an(x) th for all x in D .

Thus when h is sufficiently small, th and th would be smaller

than unity. An application of lemma 4 now yields the result.

Lemma 6

hd Z R(x,y) g K4v"
ysD :
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n
3 E: R(x,y) K4
yeD

Proof

Applying Lemma 3 to the function y(x), we have

Y (x) = hd Z R(x,y) [-ﬁ\b(y)]
yeD

g2

Z R(x,y) [51‘11(}')]-

yeD

Lemma 5 now yields

n
v(x) > hd z R(x,y) + R Z R(x,y) .
yeD yeD

We therefore have, for all xeD,

hd 2:, R(x,y) < max y(x) = K

yeD XeR 4

gee

Z. R(x,y) < max ¢(x) = K,
yeD ~ XeR o

Note that in the case of a hemisphere, with unit
radius we may take Ky = 5.

-
o
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Apply Lemma 3 to the function

e(x) = ¢(x) - ¢(x).

N
e (x) = hd 2: R(x,y) [-Le(y)] + h 2:, R(x,y) Gle(y).

yeD

By the triangle inequality

| (e-0)| < |Lo -
and by definition
Te -
Also
61(¢-¢) = §;0 -
YT

yeD

Lé| + |Lo-L¢|
Lé = 0.

56 , 98¢ _

n T n T %1%
lq)o

These together with (13) and (15) fed into (33) yield

P

le(x)| < ha 2.
yeD

n
R(x,y) (K;h]+ B

Z. R(XlY) [i&h] U

yeD

(33)
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Applying Lemma 6 to this inequality proves the theorem.
Conclusion

Thie reader may verify that the proofs all remain
valid for a completely variable grid spacing and

le(x)| < Kh

is true provided h is now taken to be the maximum of all hi,
di’ the variable grid widths. |

We also emphasize that the proofs here hold for a
large class of surfaces and are not limited to the hemisphere
or the ellipsoid. The only requirement is that the surface is
such that Lemma 4 holds.

With reference to equation (19), it should be noted
that we have not proved that C, is invertible. We gave it there
as a simple practical procedure. Our proofs, however, do not
depend on this equation since we considered the whole matrix A.
This matrix has several pleasant properties,which we had no need
—l_exists with every element
positive. A, of (18) is also of positive type [2].

to mention explicitly. For example, A

4 st } : .
- s AL

'
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