2,091 research outputs found

    Isotope Shifts in Beryllium-, Boron-, Carbon-, and Nitrogen-like Ions from Relativistic Configuration Interaction Calculations

    Full text link
    Energy levels, normal and specific mass shift parameters as well as electronic densities at the nucleus are reported for numerous states along the beryllium, boron, carbon, and nitrogen isoelectronic sequences. Combined with nuclear data, these electronic parameters can be used to determine values of level and transition isotope shifts. The calculation of the electronic parameters is done using first-order perturbation theory with relativistic configuration interaction wave functions that account for valence, core-valence and core-core correlation effects as zero-order functions. Results are compared with experimental and other theoretical values, when available.Comment: 56 pages, 1 figure, Atomic Data and Nuclear Data Tables (2014

    Finite-size effects in amorphous Fe90Zr10/Al75Zr25 multilayers

    Full text link
    The thickness dependence of the magnetic properties of amorphous Fe90Zr10 layers has been explored using Fe90Zr10/Al75Zr25 multilayers. The Al75Zr25 layer thickness is kept at 40 \AA, while the thickness of the Fe90Zr10 layers is varied between 5 and 20 \AA. The thickness of the Al75Zr25 layers is sufficiently large to suppress any significant interlayer coupling. Both the Curie temperature and the spontaneous magnetization decrease non-linearly with decreasing thickness of the Fe90Zr10 layers. No ferromagnetic order is observed in the multilayer with 5 {\AA} Fe90Zr10 layers. The variation of the Curie temperature TcT_c with the Fe90Zr10 layer thickness tt is fitted with a finite-size scaling formula [1-\Tc(t)/\Tc(\infty)]=[(t-t')/t_0]^{-\lambda}, yielding λ=1.2\lambda=1.2, and a critical thickness t=6.5t'=6.5 \AA, below which the Curie temperature is zero.Comment: 8 pages, 8 figure

    Absence of Conventional Spin-Glass Transition in the Ising Dipolar System LiHo_xY_{1-x}F_4

    Full text link
    The magnetic properties of single crystals of LiHo_xY_{1-x}F_4 with x=16.5% and x=4.5% were recorded down to 35 mK using a micro-SQUID magnetometer. While this system is considered as the archetypal quantum spin glass, the detailed analysis of our magnetization data indicates the absence of a phase transition, not only in a transverse applied magnetic field, but also without field. A zero-Kelvin phase transition is also unlikely, as the magnetization seems to follow a non-critical exponential dependence on the temperature. Our analysis thus unmasks the true, short-ranged nature of the magnetic properties of the LiHo_xY_{1-x}F_4 system, validating recent theoretical investigations suggesting the lack of phase transition in this system.Comment: 5 pages, 4 figure

    Extended calculations of energy levels, radiative properties, AJA_{J}, BJB_{J} hyperfine interaction constants, and Land\'e gJg_{J}-factors for nitrogen-like \mbox{Ge XXVI}

    Get PDF
    Employing two state-of-the-art methods, multiconfiguration Dirac--Hartree--Fock and second-order many-body perturbation theory, highly accurate calculations are performed for the lowest 272 fine-structure levels arising from the 2s22p32s^{2} 2p^{3}, 2s2p42s 2p^{4}, 2p52p^{5}, 2s22p23l2s^{2} 2p^{2} 3l~(l=s,p,dl=s,p,d), 2s2p33l2s 2p^{3}3l (l=s,p,dl=s,p,d), and 2p43l2p^{4} 3l (l=s,p,dl=s,p,d) configurations in nitrogen-like Ge XXVI. Complete and consistent atomic data, including excitation energies, lifetimes, wavelengths, hyperfine structures, Land\'e gJg_{J}-factors, and E1, E2, M1, M2 line strengths, oscillator strengths, and transition rates among these 272 levels are provided. Comparisons are made between the present two data sets, as well as with other available experimental and theoretical values. The present data are accurate enough for identification and deblending of emission lines involving the n=3n=3 levels, and are also useful for modeling and diagnosing fusion plasmas

    Exploring Biorthonormal Transformations of Pair-Correlation Functions in Atomic Structure Variational Calculations

    Full text link
    Multiconfiguration expansions frequently target valence correlation and correlation between valence electrons and the outermost core electrons. Correlation within the core is often neglected. A large orbital basis is needed to saturate both the valence and core-valence correlation effects. This in turn leads to huge numbers of CSFs, many of which are unimportant. To avoid the problems inherent to the use of a single common orthonormal orbital basis for all correlation effects in the MCHF method, we propose to optimize independent MCHF pair-correlation functions (PCFs), bringing their own orthonormal one-electron basis. Each PCF is generated by allowing single- and double- excitations from a multireference (MR) function. This computational scheme has the advantage of using targeted and optimally localized orbital sets for each PCF. These pair-correlation functions are coupled together and with each component of the MR space through a low dimension generalized eigenvalue problem. Nonorthogonal orbital sets being involved, the interaction and overlap matrices are built using biorthonormal transformation of the coupled basis sets followed by a counter-transformation of the PCF expansions. Applied to the ground state of beryllium, the new method gives total energies that are lower than the ones from traditional CAS-MCHF calculations using large orbital active sets. It is fair to say that we now have the possibility to account for, in a balanced way, correlation deep down in the atomic core in variational calculations

    Extended Calculations of Spectroscopic Data: Energy Levels, Lifetimes and Transition rates for O-like ions from Cr XVII to Zn XXIII

    Full text link
    Employing two state-of-the-art methods, multiconfiguration Dirac--Hartree--Fock and second-order many-body perturbation theory, the excitation energies and lifetimes for the lowest 200 states of the 2s22p42s^2 2p^4, 2s2p52s 2p^5, 2p62p^6, 2s22p33s2s^2 2p^3 3s, 2s22p33p2s^2 2p^3 3p, 2s22p33d2s^2 2p^3 3d, 2s2p43s2s 2p^4 3s, 2s2p43p2s 2p^4 3p, and 2s2p43d2s 2p^4 3d configurations, and multipole (electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2)) transition rates, line strengths, and oscillator strengths among these states are calculated for each O-like ion from Cr XVII to Zn XXIII. Our two data sets are compared with the NIST and CHIANTI compiled values, and previous calculations. The data are accurate enough for identification and deblending of new emission lines from the sun and other astrophysical sources. The amount of data of high accuracy is significantly increased for the n=3n = 3 states of several O-like ions of astrophysics interest, where experimental data are very scarce

    Memory and superposition in a spin glass

    Full text link
    Non-equilibrium dynamics in a Ag(Mn) spin glass are investigated by measurements of the temperature dependence of the remanent magnetisation. Using specific cooling protocols before recording the thermo- or isothermal remanent magnetisations on re-heating, it is found that the measured curves effectively disclose non-equilibrium spin glass characteristics such as ageing and memory phenomena as well as an extended validity of the superposition principle for the relaxation. The usefulness of this "simple" dc-method is discussed, as well as its applicability to other disordered magnetic systems.Comment: REVTeX style; 8 pages, 4 figure

    Extended atomic data for oxygen abundance analyses

    Full text link
    As the most abundant element in the universe after hydrogen and helium, oxygen plays a key role in planetary, stellar, and galactic astrophysics. Its abundance is especially influential on stellar structure and evolution, and as the dominant opacity contributor at the base of the Sun's convection zone it is central to the discussion around the solar modelling problem. However, abundance analyses require complete and reliable sets of atomic data. We present extensive atomic data for O I, by using the multiconfiguration Dirac-Hartree-Fock and relativistic configuration interaction methods. Lifetimes and transition probabilities for radiative electric dipole transitions are given and compared with results from previous calculations and available measurements. The accuracy of the computed transition rates is evaluated by the differences between the transition rates in Babushkin and Coulomb gauges, as well as by a cancellation factor analysis. Out of the 989 computed transitions in this work, 205 are assigned to the accuracy classes AA-B, that is, with uncertainties less than 10%, following the criteria defined by the National Institute of Standards and Technology Atomic Spectra Database. We discuss the influence of the new log(gf) values on the solar oxygen abundance and ultimately advocate logϵO=8.70±0.04\log\epsilon_{\mathrm{O}}=8.70\pm0.04.Comment: 13 pages, 5 figures; Accepted for publication in Astronomy & Astrophysic

    Aging and scaling laws in β\beta-hydroquinone-clathrate

    Full text link
    The dielectric permittivity of the orientational glass methanol(x=0.73)-β\beta-hydroquinone-clathrate has been studied as function of temperature and waiting time using different temperature-time-protocols. We study aging, rejuvenation and memory effects in the glassy phase and discuss similarities and differences to aging in spin-glasses. We argue that the diluted methanol-clathrate, although conceptually close to its magnetic pendants, takes an intermediate character between a true spin-glass and a pure random field system

    Non-equilibrium dynamics in an interacting nanoparticle system

    Get PDF
    Non-equilibrium dynamics in an interacting Fe-C nanoparticle sample, exhibiting a low temperature spin glass like phase, has been studied by low frequency ac-susceptibility and magnetic relaxation experiments. The non-equilibrium behavior shows characteristic spin glass features, but some qualitative differences exist. The nature of these differences is discussed.Comment: 7 pages, 11 figure
    corecore