12,205 research outputs found
Recommended from our members
Methane emissions inventory verification in southern California
Methane (CH4) and carbon monoxide (CO) mixing ratios were measured at an air quality monitoring station near the Mt. Wilson (MW) Observatory in southern California starting in the spring of 2007. Diurnal variation and mixing ratio correlation (R2 = 0.81) were observed. The correlation results observed agree with previous aircraft measurements collected over the greater Los Angeles (LA) metropolitan area. The consistent agreement between CH4 and CO indicates these gases are well-mixed before reaching the sampling site and the emission source contributions of both compounds are reasonably constant. Since CH4 and CO are considered non-reactive on the time scale of dispersion within the LA urban area and their emission sources are likely to be similarly distributed (e.g., associated with human activities) they are subject to similar scales of atmospheric transport and dilution. This behavior allows the relationship of CH4 and CO to be applied for estimation of CH4 emissions using well-documented CO emissions. Applying this relationship a "top-down" CH4 inventory was calculated for LA County based on the measurements observed at MW and compared with the California Air Resources Board (CARB) "bottom-up" CH4 emissions inventory based on the Intergovernmental Panel on Climate Change recommended methodologies. The "top-down" CH4 emissions inventory is approximately one-third greater than CARB's "bottom-up" inventory for LA County. Considering the uncertainties in both methodologies, the different CH4 emissions inventory approaches are in good agreement, although some under and/or uninventoried CH4 sources may exist
Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases
Spin-orbit coupling in semiconductors relates the spin of an electron to its
momentum and provides a pathway for electrically initializing and manipulating
electron spins for applications in spintronics and spin-based quantum
information processing. This coupling can be regulated with quantum confinement
in semiconductor heterostructures through band structure engineering. Here we
investigate the spin Hall effect and current-induced spin polarization in a
two-dimensional electron gas confined in (110) AlGaAs quantum wells using Kerr
rotation microscopy. In contrast to previous measurements, the spin Hall
profile exhibits complex structure, and the current-induced spin polarization
is out-of-plane. The experiments map the strong dependence of the
current-induced spin polarization to the crystal axis along which the electric
field is applied, reflecting the anisotropy of the spin-orbit interaction.
These results reveal opportunities for tuning a spin source using quantum
confinement and device engineering in non-magnetic materials.Comment: Accepted for publication (2005
A novel method for high-throughput detection and quantification of neutrophil extracellular traps reveals ROS-independent NET release with immune complexes
AbstractA newly-described first-line immune defence mechanism of neutrophils is the release of neutrophil extracellular traps (NETs). Immune complexes (ICxs) induce low level NET release. As such, the in vitro quantification of NETs is challenging with current methodologies. In order to investigate the role of NET release in ICx-mediated autoimmune diseases, we developed a highly sensitive and automated method for quantification of NETs. After labelling human neutrophils with PKH26 and extracellular DNA with Sytox green, cells are fixed and automatically imaged with 3-dimensional confocal laser scanning microscopy (3D-CLSM). NET release is then quantified with digital image analysis whereby the NET amount (Sytox green area) is corrected for the number of imaged neutrophils (PKH26 area). A high sensitivity of the assay is achieved by a) significantly augmenting the area of the well imaged (11%) as compared to conventional assays (0.5%) and b) using a 3D imaging technique for optimal capture of NETs, which are topologically superimposed on neutrophils. In this assay, we confirmed low levels of NET release upon human ICx stimulation which were positive for citrullinated histones and neutrophil elastase. In contrast to PMA-induced NET release, ICx-induced NET release was unchanged when co-incubated with diphenyleneiodonium (DPI). We were able to quantify NET release upon stimulation with serum from RA and SLE patients, which was not observed with normal human serum. To our knowledge, this is the first semi-automated assay capable of sensitive detection and quantification of NET release at a low threshold by using 3D CLSM. The assay is applicable in a high-throughput manner and allows the in vitro analysis of NET release in ICx-mediated autoimmune diseases
Recommended from our members
Unlocking supply chain disruption risk within the Thai beverage industry [forthcoming]
Purpose: A growing need for global sourcing of business has subjected firms to higher levels of uncertainty and increased risk of supply disruption. Differences in industry and infrastructure make it more difficult for firms to manage supply disruption risks effectively. This study aims to extend developing research in this area by addressing gaps within existing literature related to environmental turbulence and uncertainties.
Design/Methodology/Approach: We test our model using data collected from 253 senior managers and directors in the Thai beverage industry using advanced statistical techniques to explore the relationship between representations of supply disruption risk and uncertainty.
Findings: The results show that both magnitude and probability of risk impact on the disruption risk, but the probability of loss is a dominant determinant. We also find that demand uncertainty and quality uncertainty affect the risk perception of purchasing managers, and are related to the magnitude of disruption risk, rather than the frequency of occurrence. Interestingly, our results show that quality uncertainty negatively impacts on the severity of disruption risk.
Research limitations/implication: The construct validity of demand uncertainty was under the required threshold, intimating the need for further construct development.
Practical Implications: The framework provides managers with direction on how to formulate and target their disruption risk management strategies. The work also allows practitioners to critically reflect on implicit risk management strategies they may already employ and their effectiveness.
Originality/Value: The paper identifies key antecedents of supply disruption risk and tests them within a novel industrial context of the beverage industry and a novel national context of Thailand
Use of Integrated SPECT/CT Imaging for Tumor Dosimetry in I-131 Radioimmunotherapy: A Pilot Patient Study
Abstract Integrated systems combining functional (single-photon emission computed tomography; SPECT) imaging with anatomic (computed tomography; CT) imaging have the potential to greatly improve the accuracy of dose estimation in radionuclide therapy. In this article, we present the methodology for highly patient-specific tumor dosimetry by utilizing such a system and apply it to a pilot study of 4 follicular lymphoma patients treated with I-131 tositumomab. SPECT quantification included three-dimensional ordered-subset expectation-maximization reconstruction and CT-defined tumor outlines at each time point. SPECT/CT images from multiple time points were coupled to a Monte Carlo algorithm to calculate a mean tumor dose that incorporated measured changes in tumor volume. The tumor shrinkage, defined as the difference between volumes drawn on the first and last CT scan (a typical time period of 15 days) was in the range 5%-49%. The therapy-delivered mean tumor-absorbed dose was in the range 146-334cGy. For comparison, the therapy dose was also calculated by assuming a static volume from the initial CT and was found to underestimate this dose by up to 47%. The agreement between tracer-predicted and therapy-delivered tumor-absorbed dose was in the range 7%-21%. In summary, malignant lymphomas can have dramatic tumor regression within days of treatment, and advanced imaging methods allow for a highly patient-specific tumor-dosimetry calculation that accounts for this regression.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78152/1/cbr.2008.0568.pd
Perceptual Embedding Consistency for Seamless Reconstruction of Tilewise Style Transfer
Style transfer is a field with growing interest and use cases in deep
learning. Recent work has shown Generative Adversarial Networks(GANs) can be
used to create realistic images of virtually stained slide images in digital
pathology with clinically validated interpretability. Digital pathology images
are typically of extremely high resolution, making tilewise analysis necessary
for deep learning applications. It has been shown that image generators with
instance normalization can cause a tiling artifact when a large image is
reconstructed from the tilewise analysis. We introduce a novel perceptual
embedding consistency loss significantly reducing the tiling artifact created
in the reconstructed whole slide image (WSI). We validate our results by
comparing virtually stained slide images with consecutive real stained tissue
slide images. We also demonstrate that our model is more robust to contrast,
color and brightness perturbations by running comparative sensitivity analysis
tests
Enhancement of anammox performance in a novel non-woven fabric membrane bioreactor (nMBR)
© 2015 The Royal Society of Chemistry. To reduce operating costs and membrane fouling of conventional membrane bioreactors (cMBR), a novel MBR using a non-woven fabric membrane (nMBR) was constructed and the performance of the two MBRs was compared for anaerobic ammonium oxidation (anammox) cultivation. The results showed that the start-up period for the nMBR (44 days) was notably shorter than that for the cMBR (56 days), meanwhile the nMBR achieved a 2-times higher nitrogen removal rate (231.5 mg N per L per d) compared to the cMBR (112.3 mg N per L per d). Illumina MiSeq sequencing showed that Candidatus Kuenenia and Candidatus Jettenia were the main distinguished anammox bacteria. FISH analysis revealed that anammox bacteria predominated in both reactors, especially in the nMBR (58%) corresponding to a qPCR analysis of 1.07 × 109 copies per mL (day 120). N2O emission analysis confirmed the advantage of the nMBR in N2O reduction to reduce the influence of greenhouse gas emission while treating identical nitrogen. These results clearly demonstrated that nMBRs could be a prospective choice for anammox start-up and performance enhancement
- …