16,096 research outputs found
The Populist Marketplace: Unpacking the Role of “Thin” and “Thick” Ideology
A growing body of work adopts a “thin” ideology conception of populism, which attributes populist parties’ electoral success to anti-elite and people-centric appeals that resonate with voters holding populist attitudes. A second tradition, however, has attributed the success of populist parties to particular “thick” or “host” ideologies, such as anti-immigration, anti-globalization, or pro-redistribution positions. This creates a need to unpack which exact components of thin and/or thick populist ideology attract voters to these parties. We address this question by leveraging conjoint survey experiments that allow us to causally identify the effects of several thin and thick populist attributes on vote choice. Examining the case of Germany, results from experiments embedded in two high-quality panel surveys demonstrate that populist anti-immigration and pro-redistribution positions as well as people-centric political priorities are the most vote-maximizing components of populist ideology. In contrast, anti-elite priorities as well as Eurosceptic and anti-globalization positions do not boost support, not even among voters with strong populist attitudes. Our findings also call into question conventional wisdom about the interplay between supply and demand in the electoral marketplace. Surprisingly, populist voters, in general, are not significantly more attracted to candidates who advocate populist priorities than non-populist voters
Dilaton Quantum Cosmology with a Schrodinger-like equation
A quantum cosmological model with radiation and a dilaton scalar field is
analysed. The Wheeler-deWitt equation in the mini-superspace induces a
Schr\"odinger equation, which can be solved. An explicit wavepacket is
constructed for a particular choice of the ordering factor. A consistent
solution is possible only when the scalar field is a phantom field. Moreover,
although the wavepacket is time dependent, a Bohmian analysis allows to extract
a bouncing behaviour for the scale factor.Comment: 14 pages, 3 figures in eps format. Minors corrections, new figure
Product line architecture recovery with outlier filtering in software families: the Apo-Games case study
Software product line (SPL) approach has been widely adopted to achieve systematic reuse in families of software products. Despite its benefits, developing an SPL from scratch requires high up-front investment. Because of that, organizations commonly create product variants with opportunistic reuse approaches (e.g., copy-and-paste or clone-and-own). However, maintenance and evolution of a large number of product variants is a challenging task. In this context, a family of products developed opportunistically is a good starting point to adopt SPLs, known as extractive approach for SPL adoption. One of the initial phases of the extractive approach is the recovery and definition of a product line architecture (PLA) based on existing software variants, to support variant derivation and also to allow the customization according to customers’ needs. The problem of defining a PLA from existing system variants is that some variants can become highly unrelated to their predecessors, known as outlier variants. The inclusion of outlier variants in the PLA recovery leads to additional effort and noise in the common structure and complicates architectural decisions. In this work, we present an automatic approach to identify and filter outlier variants during the recovery and definition of PLAs. Our approach identifies the minimum subset of cross-product architectural information for an effective PLA recovery. To evaluate our approach, we focus on real-world variants of the Apo-Games family. We recover a PLA taking as input 34 Apo-Game variants developed by using opportunistic reuse. The results provided evidence that our automatic approach is able to identify and filter outlier variants, allowing to eliminate exclusive packages and classes without removing the whole variant. We consider that the recovered PLA can help domain experts to take informed decisions to support SPL adoption.This research was partially funded by INES 2.0; CNPq grants 465614/2014-0 and 408356/2018-9; and FAPESB grants JCB0060/2016 and BOL2443/201
Intravital imaging reveals p53-dependent cancer cell death induced by phototherapy via calcium signaling.
One challenge in biology is signal transduction monitoring in a physiological context. Intravital imaging techniques are revolutionizing our understanding of tumor and host cell behaviors in the tumor environment. However, these deep tissue imaging techniques have not yet been adopted to investigate the second messenger calcium (Ca2+). In the present study, we established conditions that allow the in vivo detection of Ca2+ signaling in three-dimensional tumor masses in mouse models. By combining intravital imaging and a skinfold chamber technique, we determined the ability of photodynamic cancer therapy to induce an increase in intracellular Ca2+ concentrations and, consequently, an increase in cell death in a p53-dependent pathway
Evaluation of vaccination strategies for SIR epidemics on random networks incorporating household structure
This paper is concerned with the analysis of vaccination strategies in a stochastic SIR (susceptible → infected → removed) model for the spread of an epidemic amongst a population of individuals with a random network of social contacts that is also partitioned into households. Under various vaccine action models, we consider both household-based vaccination schemes, in which the way in which individuals are chosen for vaccination depends on the size of the households in which they reside, and acquaintance vaccination, which targets individuals of high degree in the social network. For both types of vaccination scheme, assuming a large population with few initial infectives, we derive a threshold parameter which determines whether or not a large outbreak can occur and also the probability and fraction of the population infected by such an outbreak. The performance of these schemes is studied numerically, focusing on the influence of the household size distribution and the degree distribution of the social network. We find that acquaintance vaccination can significantly outperform the best household-based scheme if the degree distribution of the social network is heavy-tailed. For household-based schemes, when the vaccine coverage is insufficient to prevent a major outbreak and the vaccine is imperfect, we find situations in which both the probability and size of a major outbreak under the scheme which minimises the threshold parameter are \emph{larger} than in the scheme which maximises the threshold parameter
Homozygous disruption of P450 side-chain cleavage (CYP11A1) is associated with prematurity, complete 46,XY sex reversal, and severe adrenal failure
Disruption of the P450 side-chain cleavage cytochrome (P450scc) enzyme due to deleterious mutations of the CYP11A1 gene is thought to be incompatible with fetal survival because of impaired progesterone production by the fetoplacental unit. We present a 46, XY patient with a homozygous disruption of CYP11A1.The child was born prematurely with complete sex reversal and severe adrenal insufficiency. Laboratory data showed diminished or absent steroidogenesis in all pathways. Molecular genetic analysis of the CYP11A1 gene revealed a homozygous single nucleotide deletion leading to a premature termination at codon position 288. This mutation will delete highly conserved regions of the P450scc enzyme and thus is predicted to lead to a nonfunctional protein. Both healthy parents were heterozygous for this mutation.Our report demonstrates that severe disruption of P450scc can be compatible with survival in rare instances. Furthermore, defects in this enzyme are inherited in an autosomal-recessive fashion, and heterozygote carriers can be healthy and fertile. The possibility of P450scc-independent pathways of steroid synthesis in addition to the current concept of luteoplacental shift of progesterone synthesis in humans has to be questioned
Cluster analysis of multiplex ligation-dependent probe amplification data in choroidal melanoma.
PurposeTo determine underlying correlations in multiplex ligation-dependent probe amplification (MLPA) data and their significance regarding survival following treatment of choroidal melanoma (CM).MethodsMLPA data were available for 31 loci across four chromosomes (1p, 3, 6, and 8) in tumor material obtained from 602 patients with CM treated at the Liverpool Ocular Oncology Center (LOOC) between 1993 and 2012. Data representing chromosomes 3 and 8q were analyzed in depth since their association with CM patient survival is well-known. Unsupervised k-means cluster analysis was performed to detect latent structure in the data set. Principal component analysis (PCA) was also performed to determine the intrinsic dimensionality of the data. Survival analyses of the identified clusters were performed using Kaplan-Meier (KM) and log-rank statistical tests. Correlation with largest basal tumor diameter (LTD) was investigated.ResultsChromosome 3: A two-cluster (bimodal) solution was found in chromosome 3, characterized by centroids at unilaterally normal probe values and unilateral deletion. There was a large, significant difference in the survival characteristics of the two clusters (log-rank, p<0.001; 5-year survival: 80% versus 40%). Both clusters had a broad distribution in LTD, although larger tumors were characteristically in the poorer outcome group (Mann-Whitney, p<0.001). Threshold values of 0.85 for deletion and 1.15 for gain optimized the classification of the clusters. PCA showed that the first principal component (PC1) contained more than 80% of the data set variance and all of the bimodality, with uniform coefficients (0.28±0.03). Chromosome 8q: No clusters were found in chromosome 8q. Using a conventional threshold-based definition of 8q gain, and in conjunction with the chromosome 3 clusters, three prognostic groups were identified: chromosomes 3 and 8q both normal, either chromosome 3 or 8q abnormal, and both chromosomes 3 and 8q abnormal. KM analysis showed 5-year survival figures of approximately 97%, 80%, and 30% for these prognostic groups, respectively (log-rank, p<0.001). All MLPA probes within both chromosomes were significantly correlated with each other (Spearman, p<0.001).ConclusionsWithin chromosome 3, the strong correlation between the MLPA variables and the uniform coefficients from the PCA indicates a lack of evidence for a signature gene that might account for the bimodality we observed. We hypothesize that the two clusters we found correspond to binary underlying states of complete monosomy or disomy 3 and that these states are sampled by the complete ensemble of probes. Consequently, we would expect a similar pattern to emerge in higher-resolution MLPA data sets. LTD may be a significant confounding factor. Considering chromosome 8q, we found that chromosome 3 cluster membership and 8q gain as traditionally defined have an indistinguishable impact on patient outcome
Susceptibility sets and the final outcome of collective Reed–Frost epidemics
This paper is concerned with exact results for the final outcome of stochastic SIR (susceptible → infective → recovered) epidemics among a closed, finite and homogeneously mixing population. The factorial moments of the number of initial susceptibles who ultimately avoid infection by such an epidemic are shown to be intimately related to the concept of a susceptibility set. This connection leads to simple, probabilistically illuminating proofs of exact results concerning the total size and severity of collective Reed–Frost epidemic processes, in terms of Gontcharoff polynomials, first obtained in a series of papers by Claude Lef`evre and Philippe Picard. The proofs extend easily to include general final state random variables defined on SIR epidemics, and also to multitype epidemics
Crosswalking or jaywalking? the visualization of linked scientific and humanities data
A critical aspect of shared data is using an easily accessible interface that is interoperable across a wide range of heritage institutions. An innovative approach to heritage science, where data is generated about the materiality of heritage materials, is linking this data back to a visual rendering of the heritage material to begin a process of linked data and integration between science and humanities. Using the International Image Interoperability Framework (IIIF), the shared canvas data model is being expanded for integrating linked scientific analyses to this digital surrogate. There are challenges with this approach for spectral imaging data due to the additional required layers of metadata in the spectral, spatial and temporal modes, which need to be consistent, and persistent, across sets of canvases
- …