771 research outputs found

    Observational limits on the spin-down torque of Accretion Powered Stellar Winds

    Full text link
    The rotation period of classical T Tauri stars (CTTS) represents a longstanding puzzle. While young low-mass stars show a wide range of rotation periods, many CTTS are slow rotators, spinning at a small fraction of break-up, and their rotation period does not seem to shorten, despite the fact that they are actively accreting and contracting. Matt & Pudritz (2005) proposed that the spin-down torque of a stellar wind powered by a fraction of the accretion energy would be strong enough to balance the spin-up torque due to accretion. Since this model establishes a direct relation between accretion and ejection, the observable stellar parameters (mass, radius, rotation period, magnetic field) and the accretion diagnostics (accretion shock luminosity), can be used to constraint the wind characteristics. In particular, since the accretion energy powers both the stellar wind and the shock emission, we show in this letter how the accretion shock luminosity L_UV can provide upper limits to the spin-down efficiency of the stellar wind. It is found that luminous sources with L_UV > 0.1 L_Sun and typical dipolar field components < 1 kG do not allow spin equilibrium solutions. Lower luminosity stars (L_UV < 0.1 L_Sun) are compatible with a zero-torque condition, but the corresponding stellar winds are still very demanding in terms of mass and energy flux. We therefore conclude that accretion powered stellar winds are unlikely to be the sole mechanism to provide an efficient spin-down torque for accreting classical T Tauri stars.Comment: 6 pages, 3 figures, accepted for publication in ApJ Letter

    Impact of a complex food microbiota on energy metabolism in the model organism Caenorhabditis elegans

    Get PDF
    The nematode Caenorhabditis elegans is widely used as a model system for research on aging, development, and host-pathogen interactions. Little is currently known about the mechanisms underlying the effects exerted by foodborne microbes. We took advantage of C. elegans to evaluate the impact of foodborne microbiota on well characterized physiological features of the worms. Foodborne lactic acid bacteria (LAB) consortium was used to feed nematodes and its composition was evaluated by 16S rDNA analysis and strain typing before and after colonization of the nematode gut. Lactobacillus delbrueckii, L. fermentum, and Leuconostoc lactis were identified as the main species and shown to display different worm gut colonization capacities. LAB supplementation appeared to decrease nematode lifespan compared to the animals fed with the conventional Escherichia coli nutrient source or a probiotic bacterial strain. Reduced brood size was also observed in microbiota-fed nematodes. Moreover, massive accumulation of lipid droplets was revealed by BODIPY staining. Altered expression of nhr-49, pept-1, and tub-1 genes, associated with obesity phenotypes, was demonstrated by RT-qPCR. Since several pathways are evolutionarily conserved in C. elegans, our results highlight the nematode as a valuable model system to investigate the effects of a complex microbial consortium on host energy metabolism

    Large scale magnetic fields in viscous resistive accretion disks. I. Ejection from weakly magnetized disks

    Full text link
    Cold steady-state disk wind theory from near Keplerian accretion disks requires a large scale magnetic field at near equipartition strength. However the minimum magnetization has never been tested. We investigate the time evolution of an accretion disk threaded by a weak vertical magnetic field. The strength of the field is such that the disk magnetization falls off rapidly with radius. Four 2.5D numerical simulations of viscous resistive accretion disk are performed using the magnetohydrodynamic code PLUTO. In these simulations, a mean field approach is used and turbulence is assumed to give rise to anomalous transport coefficients (alpha prescription). The large scale magnetic field introduces only a small perturbation to the disk structure, with accretion driven by the dominant viscous torque. A super fast magnetosonic jet is observed to be launched from the innermost regions and remains stationary over more than 953 Keplerian orbits. The self-confined jet is launched from a finite radial zone in the disk which remains constant over time. Ejection is made possible because the magnetization reaches unity at the disk surface, due to the steep density decrease. However, no ejection is reported when the midplane magnetization becomes too small. The asymptotic jet velocity remains nevertheless too low to explain observed jets due to the negligible power carried away by the jet. Astrophysical disks with superheated surface layers could drive analogous outflows even if their midplane magnetization is low. Sufficient angular momentum would be extracted by the turbulent viscosity to allow the accretion process to continue. The magnetized outflows would be no more than byproducts, rather than a fundamental driver of accretion. However, if the midplane magnetization increases towards the center, a natural transition to an inner jet dominated disk could be achieved.Comment: Accepted by Astronomy and Astrophysic

    Angular momentum evolution of young low-mass stars and brown dwarfs: observations and theory

    Full text link
    This chapter aims at providing the most complete review of both the emerging concepts and the latest observational results regarding the angular momentum evolution of young low-mass stars and brown dwarfs. In the time since Protostars & Planets V, there have been major developments in the availability of rotation period measurements at multiple ages and in different star-forming environments that are essential for testing theory. In parallel, substantial theoretical developments have been carried out in the last few years, including the physics of the star-disk interaction, numerical simulations of stellar winds, and the investigation of angular momentum transport processes in stellar interiors. This chapter reviews both the recent observational and theoretical advances that prompted the development of renewed angular momentum evolution models for cool stars and brown dwarfs. While the main observational trends of the rotational history of low mass objects seem to be accounted for by these new models, a number of critical open issues remain that are outlined in this review.Comment: 22 pages, 8 figures, accepted for publication in Protostars & Planets VI, 2014, University of Arizona Press, eds. H. Beuther, R. Klessen, K. Dullemond, Th. Hennin

    Transcriptional signatures of parasitization and markers of colony decline in Varroa-infested honey bees (Apis mellifera)

    Get PDF
    Extensive annual losses of honey bee colonies (Apis mellifera L.) reported in the northern hemisphere represent a global problem for agriculture and biodiversity. The parasitic mite Varroa destructor, in association with deformed wing virus (DWV), plays a key role in this phenomenon, but the underlying mechanisms are still unclear. To elucidate these mechanisms, we analyzed the gene expression profile of uninfested and mite infested bees, under laboratory and field conditions, highlighting the effects of parasitization on the bee's transcriptome under a variety of conditions and scenarios. Parasitization was significantly correlated with higher viral loads. Honey bees exposed to mite infestation exhibited an altered expression of genes related to stress response, immunity, nervous system function, metabolism and behavioural maturation. Additionally, mite infested young bees showed a gene expression profile resembling that of forager bees. To identify potential molecular markers of colony decline, the expression of genes that were commonly regulated across the experiments were subsequently assessed in colonies experiencing increasing mite infestation levels. These studies suggest that PGRP-2, hymenoptaecin, a glucan recognition protein, UNC93 and a p450 cytocrome maybe suitable general biomarkers of Varroa-induced colony decline. Furthermore, the reliability of vitellogenin, a yolk protein previously identified as a good marker of colony survival, was confirmed here. \ua9 2017 Elsevier Lt

    GPU acceleration of a model-based iterative method for Digital Breast Tomosynthesis

    Get PDF
    Digital Breast Tomosynthesis (DBT) is a modern 3D Computed Tomography X-ray technique for the early detection of breast tumors, which is receiving growing interest in the medical and scientific community. Since DBT performs incomplete sampling of data, the image reconstruction approaches based on iterative methods are preferable to the classical analytic techniques, such as the Filtered Back Projection algorithm, providing fewer artifacts. In this work, we consider a Model-Based Iterative Reconstruction (MBIR) method well suited to describe the DBT data acquisition process and to include prior information on the reconstructed image. We propose a gradient-based solver named Scaled Gradient Projection (SGP) for the solution of the constrained optimization problem arising in the considered MBIR method. Even if the SGP algorithm exhibits fast convergence, the time required on a serial computer for the reconstruction of a real DBT data set is too long for the clinical needs. In this paper we propose a parallel SGP version designed to perform the most expensive computations of each iteration on Graphics Processing Unit (GPU). We apply the proposed parallel approach on three different GPU boards, with computational performance comparable with that of the boards usually installed in commercial DBT systems. The numerical results show that the proposed GPU-based MBIR method provides accurate reconstructions in a time suitable for clinical trials

    Parameter study in disk-jet systems: Magnetization

    Get PDF
    In this study we discuss the impact of the magnetic field’s strength onto the characteristics of solutions in models where both the collimated outflow and the accretion disk are treated consistently. We perform an analysis on the range of magnetic field by non-relativistic 2.5 dimension numerical simulations using the PLUTO code. The main results are that magnetic fields around equipartition with plasma pressure allow for steady super-fast-magnetosonic collimated jet solutions; magnetic fields below equipartition correspond to intermittent collimated outflows, whereas above equipartition cases lead to sub-alfvenic winds. This allows to conclude that the configuration proposed by Blandford and Payne to interpret supersonic jets is viable both for equipartition and weaker magnetic fields

    The relationship between sulfur metabolism and tolerance of hexavalent chromium in Scenedesmus acutus (Spheropleales): Role of ATP sulfurylase

    Get PDF
    Sulfur availability and the end products of its metabolism, cysteine, glutathione and phytochelatins, play an important role in heavy metal tolerance, chromium included. Sulfate and chromate not only compete for the transporters but also for assimilation enzymes and chromium tolerance in various organisms has been associated to differences in this pathway. We investigated the mechanisms of Cr(VI)-tolerance increase induced by S-starvation focusing on the role of ATP sulfurylase (ATS) in two strains of Scenedesmus acutus with different chromium sensitivity. S-starvation enhances the defence potential by increasing sulfate uptake/assimilation and decreasing chromium uptake, thus suggesting a change in the transport system. We isolated two isoforms of the enzyme, SaATS1 and SaATS2, with different sensitivity to sulfur availability, and analysed them in S-sufficient and S-replete condition both in standard and in chromium supplemented medium. SaATS2 expression is different in the two strains and presumably marks a different sulfur perception/exploitation in the Cr-tolerant. Its induction and silencing are compatible with a role in the transient tolerance increase induced by S-starvation. This enzyme can however hardly be responsible for the large cysteine production of the Cr-tolerant strain after starvation, suggesting that cytosolic rather than chloroplastic cysteine production is differently regulated in the two strains

    X-ray emission from expanding cocoons

    Get PDF
    X-ray observations of extragalactic radiosources show strong evidences of interaction between the radio emitting plasma and the X-ray emitting ambient gas. In this paper we perform a detailed study of this interaction by numerical simulations. We study the propagation of an axisymmetric supersonic jet in an isothermal King atmosphere and we analyze the evolution of the resulting X-ray properties and their dependence on the jet physical parameters. We show the existence of two distinct and observationally different regimes of interaction, with strong and weak shocks. In the first case shells of enhanced X-ray emission are to be expected, while in the second case we expect deficit of X-ray emission coincident with the cocoon. By a comparison between analytical models and the results of our numerical simulations, we discuss the dependence of the transition between these two regimes on the jet parameters and we find that the mean controlling quantity results to be the jet kinetic power. We then discuss how the observed jets can be used to constrain the jet properties
    corecore