20,615 research outputs found

    Macro aerodynamic devices controlled by micro systems

    Get PDF
    Micro-ElectroMechanical-Systems (MEMS) have emerged as a major enabling technology across the engineering disciplines. In this study, the possibility of applying MEMS to the aerodynamic field was explored. We have demonstrated that microtransducers can be used to control the motion of a delta wing in a wind tunnel and can even maneuver a scaled aircraft in flight tests. The main advantage of using micro actuators to replace the traditional control surface is the significant reduction of radar cross-sections. At a high angle of attack, a large portion of the suction loading on a delta wing is contributed by the leading edge separation vortices which originate from thin boundary layers at the leading edge. We used microactuators with a thickness comparable to that of the boundary layer in order to alter the separation process and thus achieved control of the global motion by minute perturbations

    Efficient out-coupling and beaming of Tamm optical states via surface plasmon polariton excitation

    Get PDF
    We present evidence of optical Tamm states to surface plasmon polariton (SPP) coupling. We experimentally demonstrate that for a Bragg stack with a thin metal layer on the surface, hybrid Tamm-SPP modes may be excited when a grating on the air-metal interface is introduced. Out-coupling via the grating to free space propagation is shown to enhance the transmission as well as the directionality and polarization selection for the transmitted beam. We suggest that this system will be useful on those devices, where a metallic electrical contact as well as beaming and polarization control is needed

    Ab-initio calculation of all-optical time-resolved calorimetry of nanosized systems: Evidence of nanosecond-decoupling of electron and phonon temperatures

    Get PDF
    The thermal dynamics induced by ultrashort laser pulses in nanoscale systems, i.e. all-optical time-resolved nanocalorimetry is theoretically investigated from 300 to 1.5 K. We report ab-initio calculations describing the temperature dependence of the electron-phonon interactions for Cu nanodisks supported on Si. The electrons and phonons temperatures are found to decouple on the ns time scale at 10 K, which is two orders of magnitude in excess with respect to that found for standard low-temperature transport experiments. By accounting for the physics behind our results we suggest an alternative route for overhauling the present knowledge of the electron-phonon decoupling mechanism in nanoscale systems by replacing the mK temperature requirements of conventional experiments with experiments in the time-domain.Comment: 5 pages, 3 figures. Accepted on Physical Review B

    Optimal design of nonuniform FIR transmultiplexer using semi-infinite programming

    Get PDF
    This paper considers an optimum nonuniform FIR transmultiplexer design problem subject to specifications in the frequency domain. Our objective is to minimize the sum of the ripple energy for all the individual filters, subject to the specifications on amplitude and aliasing distortions, and to the passband and stopband specifications for the individual filters. This optimum nonuniform transmultiplexer design problem can be formulated as a quadratic semi-infinite programming problem. The dual parametrization algorithm is extended to this nonuniform transmultiplexer design problem. If the lengths of the filters are sufficiently long and the set of decimation integers is compatible, then a solution exists. Since the problem is formulated as a convex problem, if a solution exists, then the solution obtained is unique and the local solution is a global minimum

    Two--Electron Atoms in Short Intense Laser Pulses

    Full text link
    We discuss a method of solving the time dependent Schrodinger equation for atoms with two active electrons in a strong laser field, which we used in a previous paper [A. Scrinzi and B. Piraux, Phys. Rev. A 56, R13 (1997)] to calculate ionization, double excitation and harmonic generation in Helium by short laser pulses. The method employs complex scaling and an expansion in an explicitly correlated basis. Convergence of the calculations is documented and error estimates are provided. The results for Helium at peak intensities up to 10^15 W/cm^2 and wave length 248 nm are accurate to at least 10 %. Similarly accurate calculations are presented for electron detachment and double excitation of the negative hydrogen ion.Comment: 14 pages, including figure

    Possible Evidence for Truncated Thin Disks in the Low-Luminosity Active Galactic Nuclei M81 and NGC 4579

    Get PDF
    M81 and NGC 4579 are two of the few low-luminosity active galactic nuclei which have an estimated mass for the central black hole, detected hard X-ray emission, and detected optical/UV emission. In contrast to the canonical ``big blue bump,'' both have optical/UV spectra which decrease with increasing frequency in a νLν\nu L_\nu plot. Barring significant reddening by dust and/or large errors in the black hole mass estimates, the optical/UV spectra of these systems require that the inner edge of a geometrically thin, optically thick, accretion disk lies at roughly 100 Schwarzschild radii. The observed X-ray radiation can be explained by an optically thin, two temperature, advection-dominated accretion flow at smaller radii.Comment: emulateapj.sty, to appear in ApJ Letter
    • …
    corecore