5,053 research outputs found

    Estimating the distribution of dynamic invariants: illustrated with an application to human photo-plethysmographic time series

    Get PDF
    Dynamic invariants are often estimated from experimental time series with the aim of differentiating between different physical states in the underlying system. The most popular schemes for estimating dynamic invariants are capable of estimating confidence intervals, however, such confidence intervals do not reflect variability in the underlying dynamics. We propose a surrogate based method to estimate the expected distribution of values under the null hypothesis that the underlying deterministic dynamics are stationary. We demonstrate the application of this method by considering four recordings of human pulse waveforms in differing physiological states and show that correlation dimension and entropy are insufficient to differentiate between these states. In contrast, algorithmic complexity can clearly differentiate between all four rhythms

    On the Cosmological Evolution of the Luminosity Function and the Accretion Rate of Quasars

    Full text link
    We consider a class of models for the redshift evolution (between 0\lsim z \lsim 4) of the observed optical and X-ray quasar luminosity functions (LFs), with the following assumptions: (i) the mass-function of dark matter halos follows the Press-Schechter theory, (ii) the black hole (BH) mass scales linearly with the halo mass, (iii) quasars have a constant universal lifetime, and (iv) a thin accretion disk provides the optical luminosity of quasars, while the X-ray/optical flux ratio is calibrated from a sample of observed quasars. The mass accretion rate M˙\dot{M} onto quasar BHs is a free parameter of the models, that we constrain using the observed LFs. The accretion rate M˙\dot M inferred from either the optical or X-ray data under these assumptions generally decreases as a function of cosmic time from z4z \simeq 4 to z0z \simeq 0. We find that a comparable accretion rate is inferred from the X-ray and optical LF only if the X-ray/optical flux ratio decreases with BH mass. Near z0z\simeq 0, M˙\dot M drops to substantially sub-Eddington values at which advection-dominated accretion flows (ADAFs) exist. Such a decline of M˙\dot M, possibly followed by a transition to radiatively inefficient ADAFs, could explain both the absence of bright quasars in the local universe and the faintness of accreting BHs at the centers of nearby galaxies. We argue that a decline of the accretion rate of the quasar population is indeed expected in cosmological structure formation models.Comment: Latex, 23 pages, 9 figures, accepted for publication in Ap

    Telemetry system driven by radiation power for use in gravitational wave detectors

    Get PDF
    2005-2006 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Rhythmic dynamics and synchronization via dimensionality reduction : application to human gait

    Get PDF
    Reliable characterization of locomotor dynamics of human walking is vital to understanding the neuromuscular control of human locomotion and disease diagnosis. However, the inherent oscillation and ubiquity of noise in such non-strictly periodic signals pose great challenges to current methodologies. To this end, we exploit the state-of-the-art technology in pattern recognition and, specifically, dimensionality reduction techniques, and propose to reconstruct and characterize the dynamics accurately on the cycle scale of the signal. This is achieved by deriving a low-dimensional representation of the cycles through global optimization, which effectively preserves the topology of the cycles that are embedded in a high-dimensional Euclidian space. Our approach demonstrates a clear advantage in capturing the intrinsic dynamics and probing the subtle synchronization patterns from uni/bivariate oscillatory signals over traditional methods. Application to human gait data for healthy subjects and diabetics reveals a significant difference in the dynamics of ankle movements and ankle-knee coordination, but not in knee movements. These results indicate that the impaired sensory feedback from the feet due to diabetes does not influence the knee movement in general, and that normal human walking is not critically dependent on the feedback from the peripheral nervous system

    Large-Amplitude Ultraviolet Variations in the RR Lyrae Star ROTSE-I J143753.84+345924.8

    Full text link
    The NASA Galaxy Evolution Explorer (GALEX) satellite has obtained simultaneous near and far ultraviolet light curves of the ROTSE-I Catalog RR Lyrae ab-type variable star J143753.84+345924.8. A series of 38 GALEX Deep Imaging Survey observations well distributed in phase within the star's 0.56432d period shows an AB=4.9mag variation in the far UV (1350-1750A) band and an AB=1.8mag variation in the near UV (1750-2750A) band, compared with only a 0.8mag variation in the broad, unfiltered ROTSE-I (4500-10000A) band. These GALEX UV observations are the first to reveal a large RR Lyrae amplitude variation at wavelengths below 1800A. We compare the GALEX and ROTSE-I observations to predictions made by recent Kurucz stellar atmosphere models. We use published physical parameters for the comparable period (0.57433d), well-observed RR Lyrae star WY Antliae to compute predicted FUV, NUV, and ROTSE-I light curves for J143753.84+345924.8. The observed light curves agree with the Kurucz predictions for [Fe/H]=-1.25 to within AB=0.2mag in the GALEX NUV and ROTSE-I bands, and within 0.5mag in the FUV. At all metallicities between solar and one hundredth solar, the Kurucz models predict 6-8mag of variation at wavelengths between 1000-1700A. Other variable stars with similar temperature variations, such as Cepheids, should also have large-amplitude FUV light curves, observable during the ongoing GALEX imaging surveys.Comment: This paper will be published as part of the Galaxy Evolution Explorer (GALEX) Astrophysical Journal Letters Special Issue. Links to the full set of papers will be available at http:/www.galex.caltech.edu/PUBLICATIONS after November 22, 200

    GALEX UV Spectroscopy and Deep Imaging of LIRGs in the ELAIS S1 field

    Get PDF
    The ELAIS S1 field was observed by GALEX in both its Wide Spectroscopic and Deep Imaging Survey modes. This field was previously observed by the Infrared Space Observatory and we made use of the catalogue of multi-wavelength data published by the ELAIS consortium to select galaxies common to the two samples. Among the 959 objects with GALEX spectroscopy, 88 are present in the ELAIS catalog and 19 are galaxies with an optical spectroscopic redshift. The distribution of redshifts covers the range 0<z<1.60<z<1.6. The selected galaxies have bolometric IR luminosities 10<Log(LIR)<1310<Log(L_{IR})<13 (deduced from the 15μm15 \mu m flux using ISOCAM) which means that we cover a wide range of galaxies from normal to Ultra Luminous IR Galaxies. The mean (σ\sigma) UV luminosity (not corrected for extinction) amounts to Log(λ.L1530)=9.8(0.6)Log(\lambda.L_{1530}) = 9.8 (0.6) L_\sun for the low-z (z0.35z \le 0.35) sample. The UV slope β\beta (assuming fλλβf_\lambda \propto \lambda^\beta) correlates with the GALEX FUV-NUV color if the sample is restricted to galaxies below z<0.1z < 0.1. Taking advantage of the UV and IR data, we estimate the dust attenuation from the IR/UV ratio and compare it to the UV slope β\beta. We find that it is not possible to uniquely estimate the dust attenuation from β\beta for our sample of galaxies. These galaxies are highly extinguished with a median value AFUV=2.7±0.8A_{FUV} = 2.7 \pm 0.8. Once the dust correction applied, the UV- and IR-based SFRs correlate. For the closest galaxy with the best quality spectrum, we see a feature consistent with being produced by a bump near 220nm in the attenuation curve.Comment: This paper has been published as part of the GALEX ApJL Special Issue (ApJ 619, L63

    Dynamic Evolution of a Quasi-Spherical General Polytropic Magnetofluid with Self-Gravity

    Full text link
    In various astrophysical contexts, we analyze self-similar behaviours of magnetohydrodynamic (MHD) evolution of a quasi-spherical polytropic magnetized gas under self-gravity with the specific entropy conserved along streamlines. In particular, this MHD model analysis frees the scaling parameter nn in the conventional polytropic self-similar transformation from the constraint of n+γ=2n+\gamma=2 with γ\gamma being the polytropic index and therefore substantially generalizes earlier analysis results on polytropic gas dynamics that has a constant specific entropy everywhere in space at all time. On the basis of the self-similar nonlinear MHD ordinary differential equations, we examine behaviours of the magnetosonic critical curves, the MHD shock conditions, and various asymptotic solutions. We then construct global semi-complete self-similar MHD solutions using a combination of analytical and numerical means and indicate plausible astrophysical applications of these magnetized flow solutions with or without MHD shocks.Comment: 21 pages, 7 figures, accepted for publication in APS

    UV to IR SEDs of UV selected galaxies in the ELAIS fields: evolution of dust attenuation and star formation activity from z=0.7 to z=0.2

    Get PDF
    We study the ultraviolet to far-infrared (hereafter UV-to-IR) SEDs of a sample of intermediate redshift (0.2 < z < 0.7) UV-selected galaxies from the ELAIS-N1 and ELAIS-N2 fields by fitting a multi-wavelength dataset to a library of GRASIL templates. Star formation related properties of the galaxies are derived from the library of models by using the Bayesian statistics. We find a decreasing presence of galaxies with low attenuation and low total luminosity as redshift decreases, which does not hold for high total luminosity galaxies. In addition the dust attenuation of low mass galaxies increases as redshift decreases, and this trend seems to disappear for galaxies with M* > 10^11 M_sun. This result is consistent with a mass dependent evolution of the dust to gas ratio, which could be driven by a mass dependent efficiency of star formation in star forming galaxies. The specific star formation rates (SSFR) decrease with increasing stellar mass at all redshifts, and for a given stellar mass the SSFR decreases with decreasing redshift. The differences in the slope of the M*--SSFR relation found between this work and others at similar redshift could be explained by the adopted selection criteria of the samples which, for a UV selected sample, favours blue, star forming galaxies.Comment: 21 figures, accepted for publication in Ap
    corecore