32 research outputs found

    To Breve fra Niels Krog Bredal.

    Get PDF
    The present work has been done within the IAEA Environmental Modelling for Radiation Safety Programme. EMRAS-II aims to improve the capabilities in the field of environmental radiation dose assessment by means of acquisition of improved data for model testing, comparison, reaching consensus on modelling philosophies, approaches and parameter values, development of improved methods and exchange of information

    Sustainability and integration of radioecology — position paper

    Get PDF
    This position paper gives an overview of how the COMET project (COordination and iMplementation of a pan-European instrumenT for radioecology, a combined Collaborative Project and Coordination and Support Action under the EC/Euratom 7th Framework Programme) contributed to the integration and sustainability of radioecology in Europe via its support to and interaction with the European Radioecology ALLIANCE. COMET built upon the foundations laid by the FP7 project STAR (Strategic Network for Integrating Radioecology) Network of Excellence in radioecology. In close association with the ALLIANCE, and based on the Strategic Research Agenda (SRA), COMET developed innovative mechanisms for joint programming and implementation of radioecological research. To facilitate and foster future integration under a common federating structure, research activities developed within COMET were targeted at radioecological research needs identified in the SRA. Furthermore, COMET maintained and developed strong mechanisms for knowledge exchange, dissemination and training to enhance and maintain European capacity, competence and skills in radioecology. In the short term the work to promote radioecology will continue under the H2020 project EJP-CONCERT (European Joint Programme for the Integration of Radiation Protection Research). The EJP-CONCERT project (2015–2020) aims to develop a sustainable structure for promoting and administering joint programming and open research calls in the field of radiation protection research for Europe. In the longer term, radioecological research will be facilitated by the ALLIANCE. External funding is, however, required in order to be able to answer emerging research needs

    Multiple roles of lymphatic vessels in peripheral lymph node development.

    Get PDF
    The mammalian lymphatic system consists of strategically located lymph nodes (LNs) embedded into a lymphatic vascular network. Mechanisms underlying development of this highly organized system are not fully understood. Using high-resolution imaging, we show that lymphoid tissue inducer (LTi) cells initially transmigrate from veins at LN development sites using gaps in venous mural coverage. This process is independent of lymphatic vasculature, but lymphatic vessels are indispensable for the transport of LTi cells that egress from blood capillaries elsewhere and serve as an essential LN expansion reservoir. At later stages, lymphatic collecting vessels ensure efficient LTi cell transport and formation of the LN capsule and subcapsular sinus. Perinodal lymphatics also promote local interstitial flow, which cooperates with lymphotoxin-β signaling to amplify stromal CXCL13 production and thereby promote LTi cell retention. Our data unify previous models of LN development by showing that lymphatics intervene at multiple points to assist LN expansion and identify a new role for mechanical forces in LN development

    Generation of flavors and fragrances through biotransformation and de novo synthesis

    Get PDF
    Flavors and fragrances are the result of the presence of volatile and non-volatile compounds, appreciated mostly by the sense of smell once they usually have pleasant odors. They are used in perfumes and perfumed products, as well as for the flavoring of foods and beverages. In fact the ability of the microorganisms to produce flavors and fragrances has been described for a long time, but the relationship between the flavor formation and the microbial growth was only recently established. After that, efforts have been put in the analysis and optimization of food fermentations that led to the investigation of microorganisms and their capacity to produce flavors and fragrances, either by de novo synthesis or biotransformation. In this review, we aim to resume the recent achievements in the production of the most relevant flavors by bioconversion/biotransformation or de novo synthesis, its market value, prominent strains used, and their production rates/maximum concentrations.We would like to thank the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469 unit, COMPETE 2020 (POCI-01-0145FEDER-006684), and BiotecNorte operation (NORTE-01-0145FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio

    Jet Cross-sections in Leptoproduction From {QCD}

    No full text
    We have calculated the longitudinal and other polarization dependent cross sections for jet production in deep inelasticep, vp, andvˉp\bar vp scattering up to order αs of the quark-gluon coupling constant. Fragmentation of final state partons into hadrons is taken into account. Distributions in thrust,p2T in andp2T out are predicted for all three reactions and various values ofW andQ

    Antibody-mediated ALCAM blockade induces corneal allograft tolerance

    No full text

    Developing biotic ligand models for uranium: research within the STAR EU Network of Excellence

    No full text
    Uranium is a radioactive contaminant of concern for the aquatic environment, with potentially deleterious releases to freshwaters due to mining, processing and waste disposal. As a metallic element forming cations in aqueous solution, with a chemotoxic mode of action, uranyl is in principle suitable for the development of Biotic Ligand Models to describe the influence of chemistry on its toxicity. Although past research has demonstrated relationships between uranyl (U(VI)) toxicity and key freshwater quality parameters such as dissolved organic carbon concentration, no biotic ligand model has so far been developed for this metal. Ongoing research within the EU Network of Excellence STAR (STrategy for Allied Radioecology) aims to generate uranyl toxicity data for freshwater species suitable for development of Biotic Ligand Models. The species under study are Atlantic salmon (Salmo salar), common duckweed (Lemna minor) and water flea (Daphnia magna). For each species, toxic responses across relevant ranges of water chemistry variations (e.g. pH, Na, Mg, K, Ca concentrations) have been measured. Chemical speciation in exposure waters will be computed using the WHAM7 model, following review and updating of the uranyl binding constants. We will present a selection of experimental results to show the key water quality parameters influencing uranyl toxicity to each organism, and will also show how the results will be used to develop Biotic Ligand Models for each organism to allow the effects of water chemistry on uranyl toxicity to be predicted
    corecore