2,646 research outputs found

    The performance of forecast-based monetary policy rules under model uncertainty

    Get PDF
    We investigate the performance of forecast-based monetary policy rules using five macroeconomic models that reflect a wide range of views on aggregate dynamics. We identify the key characteristics of rules that are robust to model uncertainty: such rules respond to the one-year-ahead inflation forecast and to the current output gap and incorporate a substantial degree of policy inertia. In contrast, rules with longer forecast horizons are less robust and are prone to generating indeterminacy. Finally, we identify a robust benchmark rule that performs very well in all five models over a wide range of policy preferences

    Coherent single electron spin control in a slanting Zeeman field

    Get PDF
    We consider a single electron in a 1D quantum dot with a static slanting Zeeman field. By combining the spin and orbital degrees of freedom of the electron, an effective quantum two-level (qubit) system is defined. This pseudo-spin can be coherently manipulated by the voltage applied to the gate electrodes, without the need for an external time-dependent magnetic field or spin-orbit coupling. Single qubit rotations and the C-NOT operation can be realized. We estimated relaxation (T1T_1) and coherence (T2T_{2}) times, and the (tunable) quality factor. This scheme implies important experimental advantages for single electron spin control.Comment: 4 pages, 3 figure

    The connection between noise and quantum correlations in a double quantum dot

    Full text link
    We investigate the current and noise characteristics of a double quantum dot system. The strong correlations induced by the Coulomb interaction create entangled two-electron states and lead to signatures in the transport properties. We show that the interaction parameter phi, which measures the admixture of the double-occupancy contribution to the singlet state and thus the degree of entanglement, can be directly accessed through the Fano factor of super-Poissonian shot noise.Comment: 5 pages, major revision, to be published in Phys. Rev.

    Two path transport measurements on a triple quantum dot

    Get PDF
    We present an advanced lateral triple quantum dot made by local anodic oxidation. Three dots are coupled in a starlike geometry with one lead attached to each dot thus allowing for multiple path transport measurements with two dots per path. In addition charge detection is implemented using a quantum point contact. Both in charge measurements as well as in transport we observe clear signatures of states from each dot. Resonances of two dots can be established allowing for serial transport via the corresponding path. Quadruple points with all three dots in resonance are prepared for different electron numbers and analyzed concerning the interplay of the simultaneously measured transport along both paths.Comment: 4 pages, 4 figure

    The Non-homogeneous Poisson Process for Fast Radio Burst Rates

    Get PDF
    This paper presents the non-homogeneous Poisson process (NHPP) for modeling the rate of fast radio bursts (FRBs) and other infrequently observed astronomical events. The NHPP, well-known in statistics, can model changes in the rate as a function of both astronomical features and the details of an observing campaign. This is particularly helpful for rare events like FRBs because the NHPP can combine information across surveys, making the most of all available information. The goal of the paper is two-fold. First, it is intended to be a tutorial on the use of the NHPP. Second, we build an NHPP model that incorporates beam patterns and a power law flux distribution for the rate of FRBs. Using information from 12 surveys including 15 detections, we find an all-sky FRB rate of 586.88 events per sky per day above a flux of 1 Jy (95\% CI: 271.86, 923.72) and a flux power-law index of 0.91 (95\% CI: 0.57, 1.25). Our rate is lower than other published rates, but consistent with the rate given in Champion et al. 2016.Comment: 19 pages, 2 figure

    Emergence of a negative charging energy in a metallic dot capacitively coupled to a superconducting island

    Full text link
    We consider the hybrid setup formed by a metallic dot, capacitively coupled to a superconducting island S connected to a bulk superconductor by a Josephson junction. Charge fluctuations in S act as a dynamical gate and overscreen the electronic repulsion in the metallic dot, producing an attractive interaction between two additional electrons. As the offset charge of the metallic dot is increased, the dot charging curve shows positive steps (+2e+2e) followed by negative ones (e-e) signaling the occurrence of a negative differential capacitance. A proposal for experimental detection is given, and potential applications in nanoelectronics are mentioned.Comment: Revised version, 4 pages, 4 figure

    Latched Detection of Excited States in an Isolated Double Quantum Dot

    Full text link
    Pulsed electrostatic gating combined with capacitive charge sensing is used to perform excited state spectroscopy of an electrically isolated double-quantum-dot system. The tunneling rate of a single charge moving between the two dots is affected by the alignment of quantized energy levels; measured tunneling probabilities thereby reveal spectral features. Two pulse sequences are investigated, one of which, termed latched detection, allows measurement of a single tunneling event without repetition. Both provide excited-state spectroscopy without electrical contact to the double-dot system.Comment: related papers available at http://marcuslab.harvard.ed

    Unexpected Conductance Dip in the Kondo Regime of Linear Arrays of Quantum Dots

    Full text link
    Using exact-diagonalization of small clusters and Dyson equation embedding techniques, the conductance GG of linear arrays of quantum dots is investigated. The Hubbard interaction induces Kondo peaks at low temperatures for an odd number of dots. Remarkably, the Kondo peak is split in half by a deep minimum, and the conductance vanishes at one value of the gate voltage. Tentative explanations for this unusual effect are proposed, including an interference process between two channels contributing to GG, with one more and one less particle than the exactly-solved cluster ground-state. The Hubbard interaction and fermionic statistics of electrons also appear to be important to understand this phenomenon. Although most of the calculations used a particle-hole symmetric Hamiltonian and formalism, results also presented here show that the conductance dip exists even when this symmetry is broken. The conductance cancellation effect obtained using numerical techniques is potentially interesting, and other many-body techniques should be used to confirm its existence

    Relaxation, dephasing, and quantum control of electron spins in double quantum dots

    Full text link
    Recent experiments have demonstrated quantum manipulation of two-electron spin states in double quantum dots using electrically controlled exchange interactions. Here, we present a detailed theory for electron spin dynamics in two-electron double dot systems that was used to guide these experiments and analyze experimental results. The theory treats both charge and spin degrees of freedom on an equal basis. Specifically, we analyze the relaxation and dephasing mechanisms that are relevant to experiments and discuss practical approaches for quantum control of two-electron system. We show that both charge and spin dephasing play important roles in the dynamics of the two-spin system, but neither represents a fundamental limit for electrical control of spin degrees of freedom in semiconductor quantum bits.Comment: 18 pages, 10 figures (reduced in length from V1, removed extraneous content, added references

    Depletion-mode Quantum Dots in Intrinsic Silicon

    Get PDF
    We report the fabrication and electrical characterization of depletion-mode quantum dots in a two-dimensional hole gas (2DHG) in intrinsic silicon. We use fixed charge in a SiO2_2/Al2_2O3_3 dielectric stack to induce a 2DHG at the Si/SiO2_2 interface. Fabrication of the gate structures is accomplished with a single layer metallization process. Transport spectroscopy reveals regular Coulomb oscillations with charging energies of 10-15 meV and 3-5 meV for the few- and many-hole regimes, respectively. This depletion-mode design avoids complex multilayer architectures requiring precision alignment, and allows to adopt directly best practices already developed for depletion dots in other material systems. We also demonstrate a method to deactivate fixed charge in the SiO2_2/Al2_2O3_3 dielectric stack using deep ultraviolet light, which may become an important procedure to avoid unwanted 2DHG build-up in Si MOS quantum bits.Comment: Accepted to Applied Physics Letters. 5 pages, 3 figure
    corecore