52 research outputs found

    Circulating Levels of Adipocyte and Epidermal Fatty Acid–Binding Proteins in Relation to Nephropathy Staging and Macrovascular Complications in Type 2 Diabetic Patients

    Get PDF
    OBJECTIVE—To investigate the relationships of serum adipocyte fatty acid–binding protein (A-FABP) and epidermal fatty acid–binding protein (E-FABP) with renal dysfunction and macrovascular complications in type 2 diabetic patients

    Aetiology of allergic rhinitis in Hong Kong

    Get PDF
    ABSTRACTIn a 1993 survey, allergic rhinitis was identified as the most common allergic disease in Hong Kong, affecting 29.1% of schoolchildren. Recently (1995), the International Study of Asthma and Allergies in Childhood (ISAAC) also reported 44.5% current rhinitis among Hong Kong teenagers. Our objective was to study the aetiology of allergic rhinitis in Hong Kong using serological tests of allergen sensitization. In 57 allergic rhinitis patients and in the same number of age- and sex-matched controls the following were measured: serum total IgE, mixed aeroallergen IgE (Phadiatop™) and specific IgE versus house dust mite (HDM), cockroach, cat and dog dander, mould mixture (Penicillium, Cladosporium, Aspergillus and Alternaria species) and four local pollens (Bermuda grass, Timothy, ragweed and mugwort). Compared with controls, allergic rhinitis patients (26 males, 31 females; mean (± SD) age 25 ±11 years) had a significantly elevated serum total IgE concentration (mean ± SEM: 496 ± 88 vs 179 ± 38 kU/L) and an increased proportion of positive Phadiatop (95 vs 33%) and specific IgE tests versus HDM (90 vs 44%) and cockroach (42 vs 9%; Mann-Whitney U-test and χ2 tests all P < 0.005). There was no significant difference in sensitization to other allergens tested. House dust mite and cockroach are ubiquitous in Hong Kong with a warm, humid climate and crowded living conditions. Their identification as aetiological agents of allergic rhinitis should help in the development of environmental strategies for reducing the inhalant allergen load to prevent and control this prevalent and costly health problem in our community

    Additive Interaction of Hyperglycemia and Albuminuria on Risk of Ischemic Stroke in Type 2 Diabetes: Hong Kong Diabetes Registry

    Get PDF
    OBJECTIVE—The study aims to test whether biological interaction between hyperglycemia and albuminuria can explain the inconsistent findings from epidemiological studies and clinical trials about effects of hyperglycemia on stroke in type 2 diabetes

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    Refining and regaining skills in fixation/diversification stage performers: The Five-A Model

    Get PDF
    Technical change is one of many factors underpinning success in elite, fixation/diversification stage performers. Surprisingly, however, there is a dearth of research pertaining to this process or the most efficacious methods used to bring about such a change. In this paper we highlight the emergent processes, yet also the lack in mechanistic comprehension surrounding technical change, addressing issues within the motor control, sport psychology, coaching and choking literature. More importantly, we seek an understanding of how these changes can be made more secure to competitive pressure, and how this can be embedded within the process of technical change. Following this review, we propose The Five-A Model based on successful coaching techniques, psychosocial concomitants, the avoidance of choking and principles of effective behaviour change. Specific mechanisms for each stage are discussed, with a focus on the use of holistic rhythm-based cues as a possible way of internalising changes. Finally, we suggest the need for further research to examine these five stages, to aid a more comprehensive construction of the content and delivery of such a programme within the applied setting

    Langerhans cell histiocytosis (histiocytosis X)

    Get PDF
    There has been a renewed interest in Langerhans cell histiocytosis in recent years due both to advances in basic research and to improvements in diagnostic and treatment approaches. In this article, we review the various aspects of the disease and the potential implications of these recent scientific researches for our understanding and management of the disorder.published_or_final_versio

    Lung adenocarcinoma promotion by air pollutants

    Get PDF
    A complete understanding of how exposure to environmental substances promotes cancer formation is lacking. More than 70 years ago, tumorigenesis was proposed to occur in a two-step process: an initiating step that induces mutations in healthy cells, followed by a promoter step that triggers cancer development1. Here we propose that environmental particulate matter measuring ≤2.5 μm (PM2.5), known to be associated with lung cancer risk, promotes lung cancer by acting on cells that harbour pre-existing oncogenic mutations in healthy lung tissue. Focusing on EGFR-driven lung cancer, which is more common in never-smokers or light smokers, we found a significant association between PM2.5 levels and the incidence of lung cancer for 32,957 EGFR-driven lung cancer cases in four within-country cohorts. Functional mouse models revealed that air pollutants cause an influx of macrophages into the lung and release of interleukin-1β. This process results in a progenitor-like cell state within EGFR mutant lung alveolar type II epithelial cells that fuels tumorigenesis. Ultradeep mutational profiling of histologically normal lung tissue from 295 individuals across 3 clinical cohorts revealed oncogenic EGFR and KRAS driver mutations in 18% and 53% of healthy tissue samples, respectively. These findings collectively support a tumour-promoting role for PM2.5 air pollutants and provide impetus for public health policy initiatives to address air pollution to reduce disease burden

    Evolutionary characterization of lung adenocarcinoma morphology in TRACERx

    Get PDF
    Lung adenocarcinomas (LUADs) display a broad histological spectrum from low-grade lepidic tumors through to mid-grade acinar and papillary and high-grade solid, cribriform and micropapillary tumors. How morphology reflects tumor evolution and disease progression is poorly understood. Whole-exome sequencing data generated from 805 primary tumor regions and 121 paired metastatic samples across 248 LUADs from the TRACERx 421 cohort, together with RNA-sequencing data from 463 primary tumor regions, were integrated with detailed whole-tumor and regional histopathological analysis. Tumors with predominantly high-grade patterns showed increased chromosomal complexity, with higher burden of loss of heterozygosity and subclonal somatic copy number alterations. Individual regions in predominantly high-grade pattern tumors exhibited higher proliferation and lower clonal diversity, potentially reflecting large recent subclonal expansions. Co-occurrence of truncal loss of chromosomes 3p and 3q was enriched in predominantly low-/mid-grade tumors, while purely undifferentiated solid-pattern tumors had a higher frequency of truncal arm or focal 3q gains and SMARCA4 gene alterations compared with mixed-pattern tumors with a solid component, suggesting distinct evolutionary trajectories. Clonal evolution analysis revealed that tumors tend to evolve toward higher-grade patterns. The presence of micropapillary pattern and ‘tumor spread through air spaces’ were associated with intrathoracic recurrence, in contrast to the presence of solid/cribriform patterns, necrosis and preoperative circulating tumor DNA detection, which were associated with extra-thoracic recurrence. These data provide insights into the relationship between LUAD morphology, the underlying evolutionary genomic landscape, and clinical and anatomical relapse risk

    The artificial intelligence-based model ANORAK improves histopathological grading of lung adenocarcinoma

    Get PDF
    The introduction of the International Association for the Study of Lung Cancer grading system has furthered interest in histopathological grading for risk stratification in lung adenocarcinoma. Complex morphology and high intratumoral heterogeneity present challenges to pathologists, prompting the development of artificial intelligence (AI) methods. Here we developed ANORAK (pyrAmid pooliNg crOss stReam Attention networK), encoding multiresolution inputs with an attention mechanism, to delineate growth patterns from hematoxylin and eosin-stained slides. In 1,372 lung adenocarcinomas across four independent cohorts, AI-based grading was prognostic of disease-free survival, and further assisted pathologists by consistently improving prognostication in stage I tumors. Tumors with discrepant patterns between AI and pathologists had notably higher intratumoral heterogeneity. Furthermore, ANORAK facilitates the morphological and spatial assessment of the acinar pattern, capturing acinus variations with pattern transition. Collectively, our AI method enabled the precision quantification and morphology investigation of growth patterns, reflecting intratumoral histological transitions in lung adenocarcinoma
    corecore