10,572 research outputs found

    Binary-Induced Gravitational Collapse: A Trivial Example

    Get PDF
    We present a simple model illustrating how a highly relativistic, compact object which is stable in isolation can be driven dynamically unstable by the tidal field of a binary companion. Our compact object consists of a test-particle in a relativistic orbit about a black hole; the binary companion is a distant point mass. Our example is presented in light of mounting theoretical opposition to the possibility that sufficiently massive, binary neutron stars inspiraling from large distance can collapse to form black holes prior to merger. Our strong-field model suggests that first order post-Newtonian treatments of binaries, and stability analyses of binary equilibria based on orbit-averaged, mean gravitational fields, may not be adequate to rule out this possibility.Comment: 7 pages, 5 figures, RevTeX, to appear in Phys. Rev. D, Jan 15 199

    The purpose of mess in action research: building rigour though a messy turn

    Get PDF
    Mess and rigour might appear to be strange bedfellows. This paper argues that the purpose of mess is to facilitate a turn towards new constructions of knowing that lead to transformation in practice (an action turn). Engaging in action research - research that can disturb both individual and communally held notions of knowledge for practice - will be messy. Investigations into the 'messy area', the interface between the known and the nearly known, between knowledge in use and tacit knowledge as yet to be useful, reveal the 'messy area' as a vital element for seeing, disrupting, analysing, learning, knowing and changing. It is the place where long-held views shaped by professional knowledge, practical judgement, experience and intuition are seen through other lenses. It is here that reframing takes place and new knowing, which has both theoretical and practical significance, arises: a 'messy turn' takes place

    A simultaneous search for prompt radio emission associated with the short GRB 170112A using the all-sky imaging capability of the OVRO-LWA

    Get PDF
    We have conducted the most sensitive low frequency (below 100 MHz) search to date for prompt, low-frequency radio emission associated with short-duration gamma-ray bursts (GRBs), using the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA). The OVRO-LWA's nearly full-hemisphere field-of-view (∌20\sim20,000000 square degrees) allows us to search for low-frequency (sub-100100 MHz) counterparts for a large sample of the subset of GRB events for which prompt radio emission has been predicted. Following the detection of short GRB 170112A by Swift, we used all-sky OVRO-LWA images spanning one hour prior to and two hours following the GRB event to search for a transient source coincident with the position of GRB 170112A. We detect no transient source, with our most constraining 1σ1\sigma flux density limit of 650 mJy650~\text{mJy} for frequencies spanning 27 MHz−84 MHz27~\text{MHz}-84~\text{MHz}. We place constraints on a number of models predicting prompt, low-frequency radio emission accompanying short GRBs and their potential binary neutron star merger progenitors, and place an upper limit of Lradio/LÎłâ‰Č7×10−16L_\text{radio}/L_\gamma \lesssim 7\times10^{-16} on the fraction of energy released in the prompt radio emission. These observations serve as a pilot effort for a program targeting a wider sample of both short and long GRBs with the OVRO-LWA, including bursts with confirmed redshift measurements which are critical to placing the most constraining limits on prompt radio emission models, as well as a program for the follow-up of gravitational wave compact binary coalescence events detected by advanced LIGO and Virgo.Comment: 14 pages, 5 figures, ApJ submitte

    Ethical and compliance-competence evaluation: a key element of sound corporate governance

    Get PDF
    Motivated by the ongoing post-Enron refocusing on corporate governance and the shift by the Financial Services Authority (FSA) in the UK to promoting compliance- competence within the financial services sector, this paper demonstrates how template analysis can be used as a tool for evaluating compliance-competence. Focusing on the ethical dimension of compliance-competence, we illustrate how this can be subjectively appraised. We propose that this evaluation technique could be utilised as a starting point in informing senior management of corporate governance issues and be used to monitor and demonstrate key compliance and ethical aspects of an institution to external stakeholders and regulators

    Testing Scalar-Tensor Gravity with Gravitational-Wave Observations of Inspiralling Compact Binaries

    Full text link
    Observations of gravitational waves from inspiralling compact binaries using laser-interferometric detectors can provide accurate measures of parameters of the source. They can also constrain alternative gravitation theories. We analyse inspiralling compact %binaries in the context of the scalar-tensor theory of Jordan, Fierz, Brans and Dicke, focussing on the effect on the inspiral of energy lost to dipole gravitational radiation, whose source is the gravitational self-binding energy of the inspiralling bodies. Using a matched-filter analysis we obtain a bound on the coupling constant ωBD\omega_{\rm BD} of Brans-Dicke theory. For a neutron-star/black-hole binary, we find that the bound could exceed the current bound of ωBD>500\omega_{\rm BD}>500 from solar-system experiments, for sufficiently low-mass systems. For a 0.7M⊙0.7 M_\odot neutron star and a 3M⊙3 M_\odot black hole we find that a bound ωBD≈2000\omega_{\rm BD} \approx 2000 is achievable. The bound decreases with increasing black-hole mass. For binaries consisting of two neutron stars, the bound is less than 500 unless the stars' masses differ by more than about 0.5M⊙0.5 M_\odot. For two black holes, the behavior of the inspiralling binary is observationally indistinguishable from its behavior in general relativity. These bounds assume reasonable neutron-star equations of state and a detector signal-to-noise ratio of 10.Comment: 10 pages, (3 figures upon request), WUGRAV-94-

    Falls self-efficacy and falls incidence in community-dwelling older people: the mediating role of coping

    Get PDF
    Background: A cognitive behavioural model predicts that coping responses mediate the relationship between falls related psychological concerns and falls incidence, in community-dwelling older people. If empirical support could be found for this pathway then interventions could be developed to reduce falls risk by targeting coping strategies. Therefore, this study aimed to begin the process of testing whether coping responses mediate the association between falls self-efficacy (a principal element of falls related psychological concerns) and falls incidence, in community-dwelling older people. Method: In a cross-sectional design, 160 community–dwelling older people (31 male, 129 female; mean age 83.47 years) completed the Falls Efficacy Scale–International, the Revised-Ways of Coping Questionnaire, the Turning to Religion subscale of the COPE, and a falls questionnaire. Data were analysed via mediation analysis using a bootstrapping approach. Results: Lower falls self-efficacy was associated with higher falls incidence, and more self-controlling coping was found to be a partial mediator of this association, with a confidence interval for the indirect effect of (.003, .021) and an effect size of Îș2 = .035. The association was not mediated by the other measured coping responses; namely, turning to religion, distancing, seeking social support, accepting responsibility, escape-avoidance, planful problem-solving and positive reappraisal. Conclusions: Self-controlling coping may mediate the association between falls self-efficacy and falling. If longitudinal studies confirm this finding then coping could be targeted in interventions to reduce falls

    The self-force on a static scalar test-charge outside a Schwarzschild black hole

    Get PDF
    The finite part of the self-force on a static scalar test-charge outside a Schwarzschild black hole is zero. By direct construction of Hadamard's elementary solution, we obtain a closed-form expression for the minimally coupled scalar field produced by a test-charge held fixed in Schwarzschild spacetime. Using the closed-form expression, we compute the necessary external force required to hold the charge stationary. Although the energy associated with the scalar field contributes to the renormalized mass of the particle (and thereby its weight), we find there is no additional self-force acting on the charge. This result is unlike the analogous electrostatic result, where, after a similar mass renormalization, there remains a finite repulsive self-force acting on a static electric test-charge outside a Schwarzschild black hole. We confirm our force calculation using Carter's mass-variation theorem for black holes. The primary motivation for this calculation is to develop techniques and formalism for computing all forces - dissipative and non-dissipative - acting on charges and masses moving in a black-hole spacetime. In the Appendix we recap the derivation of the closed-form electrostatic potential. We also show how the closed-form expressions for the fields are related to the infinite series solutions.Comment: RevTeX, To Appear in Phys. Rev.

    The Radio Sky at Meter Wavelengths: m-Mode Analysis Imaging with the Owens Valley Long Wavelength Array

    Get PDF
    A host of new low-frequency radio telescopes seek to measure the 21-cm transition of neutral hydrogen from the early universe. These telescopes have the potential to directly probe star and galaxy formation at redshifts 20≳z≳720 \gtrsim z \gtrsim 7, but are limited by the dynamic range they can achieve against foreground sources of low-frequency radio emission. Consequently, there is a growing demand for modern, high-fidelity maps of the sky at frequencies below 200 MHz for use in foreground modeling and removal. We describe a new widefield imaging technique for drift-scanning interferometers, Tikhonov-regularized mm-mode analysis imaging. This technique constructs images of the entire sky in a single synthesis imaging step with exact treatment of widefield effects. We describe how the CLEAN algorithm can be adapted to deconvolve maps generated by mm-mode analysis imaging. We demonstrate Tikhonov-regularized mm-mode analysis imaging using the Owens Valley Long Wavelength Array (OVRO-LWA) by generating 8 new maps of the sky north of ÎŽ=−30∘\delta=-30^\circ with 15 arcmin angular resolution, at frequencies evenly spaced between 36.528 MHz and 73.152 MHz, and ∌\sim800 mJy/beam thermal noise. These maps are a 10-fold improvement in angular resolution over existing full-sky maps at comparable frequencies, which have angular resolutions ≄2∘\ge 2^\circ. Each map is constructed exclusively from interferometric observations and does not represent the globally averaged sky brightness. Future improvements will incorporate total power radiometry, improved thermal noise, and improved angular resolution -- due to the planned expansion of the OVRO-LWA to 2.6 km baselines. These maps serve as a first step on the path to the use of more sophisticated foreground filters in 21-cm cosmology incorporating the measured angular and frequency structure of all foreground contaminants.Comment: 27 pages, 18 figure
    • 

    corecore