16,890 research outputs found

    Violation of Bell's inequality using classical measurements and non-linear local operations

    Get PDF
    We find that Bell's inequality can be significantly violated (up to Tsirelson's bound) with two-mode entangled coherent states using only homodyne measurements. This requires Kerr nonlinear interactions for local operations on the entangled coherent states. Our example is a demonstration of Bell-inequality violations using classical measurements. We conclude that entangled coherent states with coherent amplitudes as small as 0.842 are sufficient to produce such violations.Comment: 6 pages, 5 figures, to be published in Phys. Rev.

    Production of superpositions of coherent states in traveling optical fields with inefficient photon detection

    Get PDF
    We develop an all-optical scheme to generate superpositions of macroscopically distinguishable coherent states in traveling optical fields. It non-deterministically distills coherent state superpositions (CSSs) with large amplitudes out of CSSs with small amplitudes using inefficient photon detection. The small CSSs required to produce CSSs with larger amplitudes are extremely well approximated by squeezed single photons. We discuss some remarkable features of this scheme: it effectively purifies mixed initial states emitted from inefficient single photon sources and boosts negativity of Wigner functions of quantum states.Comment: 13 pages, 9 figures, to be published in Phys. Rev.

    Purification and detection of entangled coherent states

    Full text link
    In [J. C. Howell and J. A. Yeazell, Phys. Rev. A 62, 012102 (2000)], a proposal is made to generate entangled macroscopically distinguishable states of two spatially separated traveling optical modes. We model the decoherence due to light scattering during the propagation along an optical transmission line and propose a setup allowing an entanglement purification from a number of preparations which are partially decohered due to transmission. A purification is achieved even without any manual intervention. We consider a nondemolition configuration to measure the purity of the state as contrast of interference fringes in a double-slit setup. Regarding the entangled coherent states as a state of a bipartite quantum system, a close relationship between purity and entanglement of formation can be obtained. In this way, the contrast of interference fringes provides a direct means to measure entanglement.Comment: 9 pages, 6 figures, using Revtex

    Map equation for link community

    Full text link
    Community structure exists in many real-world networks and has been reported being related to several functional properties of the networks. The conventional approach was partitioning nodes into communities, while some recent studies start partitioning links instead of nodes to find overlapping communities of nodes efficiently. We extended the map equation method, which was originally developed for node communities, to find link communities in networks. This method is tested on various kinds of networks and compared with the metadata of the networks, and the results show that our method can identify the overlapping role of nodes effectively. The advantage of this method is that the node community scheme and link community scheme can be compared quantitatively by measuring the unknown information left in the networks besides the community structure. It can be used to decide quantitatively whether or not the link community scheme should be used instead of the node community scheme. Furthermore, this method can be easily extended to the directed and weighted networks since it is based on the random walk.Comment: 9 pages,5 figure

    Loss-resilient photonic entanglement swapping using optical hybrid states

    Get PDF
    We propose a scheme of loss-resilient entanglement swapping between two distant parties via an imperfect optical channel. In this scheme, two copies of hybrid entangled states are prepared and the continuous-variable parts propagate through lossy media. In order to perform successful entanglement swapping, several different measurement schemes are considered for the continuous-variable parts such as single-photon detection for ideal cases and a homodyne detection for practical cases. We find that the entanglement swapping using hybrid states with small amplitudes offers larger entanglement than the discrete-variable entanglement swapping in the presence of large losses. Remarkably, this hybrid scheme still offers excellent robustness of entanglement to the detection inefficiency. Thus, the proposed scheme could be used for the practical quantum key distribution in hybrid optical states under photon losses

    A key to room-temperature ferromagnetism in Fe-doped ZnO: Cu

    Full text link
    Successful synthesis of room-temperature ferromagnetic semiconductors, Zn1x_{1-x}Fex_{x}O, is reported. The essential ingredient in achieving room-temperature ferromagnetism in bulk Zn1x_{1-x}Fex_{x}O was found to be additional Cu doping. A transition temperature as high as 550 K was obtained in Zn0.94_{0.94}Fe0.05_{0.05}Cu0.01_{0.01}O; the saturation magnetization at room temperature reached a value of 0.75μB0.75 \mu_{\rm B} per Fe. Large magnetoresistance was also observed below 100100 K.Comment: 11 pages, 4 figures; to appear in Appl. Phys. Let

    Lattice dynamics and correlated atomic motion from the atomic pair distribution function

    Full text link
    The mean-square relative displacements (MSRD) of atomic pair motions in crystals are studied as a function of pair distance and temperature using the atomic pair distribution function (PDF). The effects of the lattice vibrations on the PDF peak widths are modelled using both a multi-parameter Born von-Karman (BvK) force model and a single-parameter Debye model. These results are compared to experimentally determined PDFs. We find that the near-neighbor atomic motions are strongly correlated, and that the extent of this correlation depends both on the interatomic interactions and crystal structure. These results suggest that proper account of the lattice vibrational effects on the PDF peak width is important in extracting information on static disorder in a disordered system such as an alloy. Good agreement is obtained between the BvK model calculations of PDF peak widths and the experimentally determined peak widths. The Debye model successfully explains the average, though not detailed, natures of the MSRD of atomic pair motion with just one parameter. Also the temperature dependence of the Debye model largely agrees with the BvK model predictions. Therefore, the Debye model provides a simple description of the effects of lattice vibrations on the PDF peak widths.Comment: 9 pages, 11 figure

    The standard fair sampling assumption is not necessary to test local realism

    Get PDF
    Almost all Bell-inequality experiments to date have used postselection, and therefore relied on the fair sampling assumption for their interpretation. The standard form of the fair sampling assumption is that the loss is independent of the measurement settings, so the ensemble of detected systems provides a fair statistical sample of the total ensemble. This is often assumed to be needed to interpret Bell inequality experiments as ruling out hidden-variable theories. Here we show that it is not necessary; the loss can depend on measurement settings, provided the detection efficiency factorises as a function of the measurement settings and any hidden variable. This condition implies that Tsirelson's bound must be satisfied for entangled states. On the other hand, we show that it is possible for Tsirelson's bound to be violated while the CHSH-Bell inequality still holds for unentangled states, and present an experimentally feasible example.Comment: 12 pages, includes experimental proposa
    corecore