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Almost all Bell inequality experiments to date have used postselection and therefore relied on the fair
sampling assumption for their interpretation. The standard form of the fair sampling assumption is that the
loss is independent of the measurement settings, so the ensemble of detected systems provides a fair statistical
sample of the total ensemble. This is often assumed to be needed to interpret Bell inequality experiments as ruling
out hidden-variable theories. Here we show that it is not necessary; the loss can depend on measurement settings,
provided the detection efficiency factorizes as a function of the measurement settings and any hidden variable.
This condition implies that Tsirelson’s bound must be satisfied for entangled states. On the other hand, we show
that it is possible for Tsirelson’s bound to be violated while the Clauser-Horne-Shimony-Holt (CHSH)-Bell

inequality still holds for unentangled states, and present an experimentally feasible example.
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I. INTRODUCTION

When quantum mechanics was first developed it was argued
that it might only be an approximation of an underlying
classical ‘“hidden-variable” theory [1]. This was put on a
testable basis by the development of Bell inequalities [2—4],
which should be obeyed by any local hidden variable (LHV)
theory. Experimental violation [5-15] of Bell inequalities
provides strong evidence against LHV theories, but almost
all of these experiments (with the exceptions of those in
Refs. [13,15]) have the loophole that the violation of the
Bell inequality could, in principle, be caused by loss [16-21].
The interpretation of these experiments as ruling out LHV
theories therefore relies on the assumption that the sampling is
“fair” [3,22]. For the interpretation of these experiments it is
therefore vital to establish what constitutes fair sampling. Here
we put fair sampling on a rigorous basis by determining exactly
what forms of loss can lead to violation of Bell inequalities.

The standard form of the fair sampling assumption is that
the detection efficiency is independent of measurement set-
tings [3,22]. Here we find that assumption is unnecessary. The
efficiency can depend on the measurement settings, provided
the efficiency factorizes as a function of the measurement
settings and any hidden variable. Most experimental tests are
of the Clauser-Horne-Shimony-Holt (CHSH) form of the Bell
inequality [3], and we therefore concentrate on the CHSH-Bell
inequality in this work. Our condition is both necessary
and sufficient for the CHSH-Bell inequality to be satisfied
for LHV theories. An alternative sufficient condition was
previously found by Ref. [23]. We also establish the necessary
and sufficient condition for the CHSH-Bell inequality to be
satisfied for unentangled states and show that if the sampling
is fair it will also prevent violation of Tsirelson’s bound [24]
with entangled states.

Loss can cause violation of Tsirelson’s bound with en-
tangled states [25,26] or with unentangled states [25,27]. It
would be useful if the postselection could cause Tsirelson’s
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bound to be violated for entangled states but still ensure that
the CHSH-Bell inequality is satisfied for unentangled states
[28,29]. Our result means that, in order to achieve this task, it is
necessary to examine the specific measurement and not just the
form of the loss. We present a scheme that violates Tsirelson’s
bound with entangled states, but not the CHSH-Bell inequality
with unentangled states. The CHSH-Bell inequality is still
violated with LHV theories, but the scheme can tolerate greater
loss than the bound derived in Ref. [18]. Other methods of
constructing Bell inequalities with greater resistance to loss
have been proposed in Refs. [20,30-33].

This manuscript is organized as follows. First, the fair
sampling assumption is explained in more detail in Sec. II.
General Bell inequalities are presented in Sec. III, and then
postselection for local hidden variable theories is analyzed
in Sec. IV. Postselection for quantum mechanics, including
Tsirelson’s bound, is analyzed in Sec. V. The use of post-
selection to enhance violation of Bell inequalities beyond
Tsirelson’s bound for entangled states is analyzed in Sec. VI.
We conclude in Sec. VII.

II. THE FAIR SAMPLING ASSUMPTION

The first work to give a form of the fair sampling
assumption was that of Clauser, Horne, Shimony, and Holt [3].
They assumed, in deriving their inequality, that the detection
efficiency is independent of the measurement settings. Pearle
expressed the assumption alternatively, that “the data recorded
[is] representative of the accepted data” [16]. That is, the
sample of detected pairs provides a fair statistical sample of all
the pairs. These forms of the fair sampling assumption, which
superficially appear different, are effectively equivalent.

For the sample to be completely fair, the probability of
sampling a pair (i.e., the efficiency) needs to be independent
of the pair. For this to be the case, the efficiency needs
to be independent of any quantity that varies between the

©2010 The American Physical Society
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individual pairs. The only quantities that can vary between
the individual pairs are the internal state (the quantum state
or any hypothetical hidden variable) and the measurement
setting that is used in measuring the pair. Therefore the
requirement that the sample is fair is exactly equivalent to
requiring the efficiency to be independent of the internal state
and measurement setting.

This requirement is slightly stronger than the requirement
given by Ref. [3], because it requires that the efficiency is
also independent of the state of the pair. However, it is easily
seen that the efficiency need not be independent of the state.
This is because, if the efficiency is dependent on the state, but
independent of the measurement setting, then the postselection
simply changes the probabilities for the internal state, yielding
a different postselected state. That is, the sampling may not
be fair, but the loss is simply yielding a postselected state on
which the sampling is fair.

This is taken advantage of in Procrustean entanglement con-
centration [34], which has been demonstrated to enhance the
violation of Bell inequalities [35]. Procrustean entanglement
concentration gives loss that depends on the state, but because
this loss is independent of the measurement settings of the
Bell measurement, it does not invalidate the Bell inequalities
for unentangled states. Although the sampling is not entirely
fair for the initial state, it is fair for the state produced by the
Procrustean entanglement concentration.

It is important to note that the condition that the efficiency
is independent of the measurement setting means that it must
be completely independent of the measurement setting. That
is, it can not be a function of the measurement setting, so
it is independent of the measurement setting for any internal
state. On the other hand, if the efficiency is independent of
the measurement setting for just one state, then it is easy to
provide examples where the Bell inequality is violated with
unentangled states or hidden variables. For a simple example,
see Appendix A.

III. GENERAL BELL INEQUALITIES

In a general Bell inequality experiment with multiple
parties, these parties each share one component of a state p,
and each performs one of a number of different measurements.
The measurement settings for party k are denoted y;, and the
measurement results are denoted s;,. We denote the vectors
of measurement settings and measurement results ¥ and 5.
One obtains a set of measurement probabilities p(s|y, p) and
can define a Bell quantity as a linear combination of these
probabilities. A Bell inequality is then an upper bound on the
value of this quantity for LHV theories. With loss, we denote
the probability of a successful measurement for settings 7 by
E(¥, p). The postselected probabilities are then given by

PGV, p) = pGlY, 0)/EF. p). (D

We do not consider complete loss, which would make the
postselected probabilities undefined.

In the specific case of CHSH-Bell inequalities, there are
two parties, Alice and Bob, and each performs one of two
dichotomic measurements. Now using the notation « and 8 for
the measurement settings for Alice and Bob, respectively, we
have @ € {A, a}, B € {B, b}, and 51, s, € {—, +}. The CHSH-
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Bell quantity without postselection is defined by
By:=C(A,B)+C(A,b)+ C(a, B)—C(a,b), (2)
where
Cla, ) := p(+, +la, B, p) — p(+, =l B, p)
— (= +lo, B, p) + p(—, —le, B, p).  (3)
The postselected form of the CHSH-Bell quantity is

_ C(A,B) C(a, B) C(A,b)  C(a,b)
" EA,B,p) &, B,p) EA,b,p) Ea,b,p)
“4)

IV. LOCAL HIDDEN-VARIABLE THEORIES

First we prove that Bell inequalities must be satisfied for
LHYV theories provided the detection efficiency factorizes as
a function of the measurement setting and a function of the
hidden variable. For a stochastic local hidden-variable theory,
probabilities are given as

PGy, ) =Y p&lp) [ | pelslyi x), ©)
x k

where x is the hidden variable. The state p simply controls
the probability distribution for x. With loss, the probabilities
p(s|¥, p) can sum to less than 1. Summing over the measure-
ment results gives the efficiencies as

EF,p) =Y pxlo) [ | &y, »), 6)
x k

where (v, x) =) p(slyk, x) is the single-party effi-
ciency for party k with measurement setting y; and hidden
variable x.

We also use the notation &gs(y,) for the efficiency
due to measurement setting y; for party k, and Eu(x)
for the efficiency due to the hidden variable for party k.
With this notation defined, we can now state our condition
rigorously.

Theorem 1. When the efficiency for each party factorizes as

Ei, x) = Es()Em(x), @)

the set of postselected probabilities that can be obtained
{p(5]7, p)} is identical to that which can be obtained without
postselection (provided no efficiency is zero).

This result means that this form of loss does not change the
type of probability distributions that are possible with LHV
models, and in particular any Bell inequality must still be
satisfied with postselection.

Proof. The proof follows by showing that there exists
a measurement scheme without postselection that yields
the same probabilities as the p(s|@, p) for the postselected
scheme. The postselected probabilities may alternatively be
given by

PEIY. ) =Y o) [ ] Blselyi %), ®)
x k
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where
. _ pxlp)
Pxlp) =5 1:[&H<x>,
&(p) ==Y pxlp) [ [ Emx), ©)
x k

PCsklves X) := p(selvi, X)/E (i, x).

This means that, by using a different LHV model with
different probabilities, we may obtain exactly the same
probability distribution for the measurement results as for the
postselected case. |

This result shows that our condition (7) is sufficient for
Bell inequalities to hold with postselection. We also have a
necessity proof in the case of CHSH-Bell inequalities. Before
showing this result, we first show the general form of the
CHSH-Bell inequality with postelection.

Lemma 1. Any local hidden variable theory must satisfy

Eilat, D&Y, x)

B <4 - 2Zp(x|p)ngg far g (0

For given & there exist probabilities p;(Z|yx, x) that saturate
this inequality.

Here we have used the same notation as for general Bell
inequalities, except we have used y; = « and y, = B for Alice
and Bob’s measurement settings, respectively. We use the
superscript x on « and B to indicate that these are chosen
as a function of the hidden variable x.

Proof. For LHV theory, the postselected CHSH-Bell quan-
tity can be rewritten as

B— ZP(XLO) |:A1(A, X)A2(B, x)

Ai(a, x)Ay(B, x)

E(A, B, p) E(a, B, p)
Ai(A, x)Ax b, x) Al(a,x)Ag(b,x)i| 7 (11
E(A, b, p) E(a, b, p)
where
Ar(Ye, X) = pi(+1ye, X) — pi(=1¥i, x).
Because the probabilities are non-negative, we have

[Ar(Vk, )| < E(Yk, x). Considering arbitrary measurements
for a given form of loss, we can choose the pg(Z|yx, x)
such that Ag(yx,x) takes any value in the range
(=& (ks X), Ex(yie, )1

Because B is linear in each of the Ay (yy, x), it is maximized
(or minimized) by taking extreme values where Ay (y, x) =
+&:(yx, x). By appropriately choosing the signs, it is possible
to make any one of the terms in the square brackets in Eq. (11)
negative and the rest positive. Changing the sign preserves the
parity of the number of negative terms, so it is not possible to
make all terms positive.

In particular, taking Ag(yx, x) = E(yk, x) makes the last
term negative. Then changing A,(b, x) to —&(b, x) makes
only the third term negative. Alternatively, changing A(a, x)
to —&(a, x) makes only the second term negative, or changing
As(b, x) to —&(b, x) and A (A, x) to =& (A, x) makes only
the first term negative.

To maximize B, we take three terms positive and one
negative for each value of x. The value of B will be maximized
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with the smallest term taken to be negative. That is,

B = Zp(x|p) |:51(A, x)& (B, x) N Ei(a, )& (B, x)

E(A, B, p) &(a, B, p)

Ei1(A, x)E (b, x)
E(A, D, p) E(a,b, p)

Eila”, x)E (B, X)}

—2 min .
apr E(t, B, p)

Summing the first four terms in Eq. (12) gives B equal to

L (e, DE(BY, x)
Brnax = 4 zgmxm)m fa g B

Ei(a, x)& (b, x)

(12)

To change the overall sign, so one term is positive and
the remaining are negative, we can change the sign of both
A1(A, x) and Aj(a, x). Using this, we can ensure that the
largest three terms in Eq. (11) are negative, and the smallest
is positive. Doing this for each value of x, we simply obtain
the negative of what was obtained before, and so obtain B =
—Biax- We therefore find that the generalization of the CHSH-
Bell inequality for the case of postselection is |B| < Byax, as
given in Eq. (10). As the above argument is constructive, it
shows how to choose probabilities py(Z|yx, x) in order to
saturate this inequality. |

Using this result, we can prove the necessary and sufficient
condition for the CHSH-Bell inequality to hold for LHV
theories with postselection. We first prove the necessary and
sufficient condition in an alternative form.

Lemma 2. The condition that

Eila, x)E(B, x)
E(a, B, p)

is independent of & and g is necessary and sufficient for |B| <
2 to be satisfied for all probabilities pi(£|yi, x).

Proof. In order for B to satisfy the usual CHSH-Bell
inequality, |B| < 2, the sum in Eq. (10) must be equal
to 1. Given that the condition is satisfied, we may take
o =« and B* = B for some arbitrary @ and 8 in Eq. (10),
giving

Bl <4~ 2Zp<|>€1(°‘ 2D 2 as)

(14)

Thus the condition is sufficient.

To prove necessity, we show that if the condition in Lemma
2 is not satisfied, then | B| < 2 may be violated. If the condition
is not satisfied for x = z, then select o and 8 such that

Ei(a, 2)E(B, 2)

&1, 2)E(B5 2)

Ea, B, p) E(as, B2, p) (10
We then have
Z (x|p) min Ei(a®, x)E(B", x)
- as.pr E(ar, B, p)

E1(a, x)E(B,
< 3 ptp S D5
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el [6’1 (. DEB. 2)
E(a, B, p)
&t 2)E(BF, Z)}
—mn-————
of, Bt g(az’ 1317 p)
<1 17

As there exists a choice of probabilities py(Z£|yx, x) which
saturate the inequality (10), we can obtain |5| > 2. Hence we
may obtain |B| > 2 if the condition in Lemma 2 is violated,
and it is therefore a necessary condition. ]

We can now use Lemma 2 to show that the factorization
condition (7) is sufficient and necessary for the CHSH-Bell
inequality. Specifically, we have the following theorem.

Theorem 2. The condition that the efficiency for each party
factorizes as

Eis X) = Ers(V)Ern(x), (18)

is necessary and sufficient for |B| < 2 to be satisfied for all
probabilities py(E|yx, x) (provided no efficiency is zero).
Proof. The proof proceeds simply by showing that the
condition in Lemma 2 is equivalent to (18). First, it is trivial to
show that Eq. (18) implies the condition. Using Eq. (18) gives

Eila, x)E(B, x) _ En(x)Em(x)
Ea, B, p) Er(p)

which is independent of « and B.

To show that the condition of Lemma 2 implies (18), we
simply need to use it to define the quantities Es(y4) and Egg(x).
Let us define, for some xg,

) 19)

Eis(w) = &(a, xo)/mz/lxé’l(oz',xo), (20)
Ein(x) = m‘;clxgl(a, x), (21)
Exs(B) = &P, xo)/n}sa}x E1(B', x0), (22)
Ean(x) i= max &4(B. x). 23)

It remains to show that these definitions satisfy (18). We find
that

Eila, x0)E2(B, x0)
maxg, g E1(a, x0)E1(B, x0)
__ E@Bp
maxg g E(, B, p)’
where in the second line we use the condition of Lemma 2

and p may be arbitrary. Hence we find that £s()&5(B) is
independent of x(, and we therefore have

Eis(@)Em(x)Es(B)Em(x) = Era, x)E(B, x).  (25)
Rearranging Eq. (25) to isolate & («, x) gives
& & &
S, x) = Es(@) ‘H(x;;(s;’ﬁ )3) () (26)

Taking the maximum over « then yields

Ex) = ng(xZijg(ﬂ;)&H(X)’ 27

where we have used max, £15(«) = 1. Hence

& (B, x) = Es(B)orm(x). (28)

Eis(@)Es(B) =

(24)
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Using this expression in Eq. (25) gives
Eila, x) = Eis(@)Em(x). (29)

Thus we have shown that the definitions (20) to (23) satisfy
Eq. (18) provided the condition of Lemma 2 holds.

Hence we have shown that the condition of Lemma 2 and
the condition (18) are equivalent, and therefore Theorem 2
follows from Lemma 2.

V. QUANTUM MECHANICS

Next we consider the restriction on the loss for quantum
mechanics rather than LHV theories. It might be thought
that the case of quantum mechanics is equivalent, because
a LHV theory can be thought of as an unentangled state, with
the x labeling orthogonal basis states. However, the case of
quantum mechanics is slightly different, because we also need
to consider all linear combinations of orthogonal basis states.

For quantum theory the probabilities of local measurement
results are obtained via a positive operator-valued measure
with elements M,ffyk, which corresponds to successful mea-
surement result s; for measurement setting y; for party k. We
also use the notation

My, =Y M}, . (30)
Sk

for the operator corresponding to a successful measurement.
Here the sum is over all successful measurement results sy ; the
measurement operator for failure is 1 — My ,,.

The restriction on the loss in terms of hidden variables (7)
implies that

EF, p) = &) ] [ Es(r). 31)
k

This expression may be taken to be the definition of the
restriction on the loss for quantum mechanics. This restriction
may alternatively be expressed as

Tr |:<® Mk,yk> ,0:| = &r(p) l—[ Ers(Ve)- (32)
k k

Let
o ®k My,

T Es)”

The restriction (32) implies that Tr(Mp) = Er(p) independent
of y, and therefore M is independent of y. This is why no
subscript y is given for M. Thus the restriction in Eq. (31)
implies that the My ,, /Ers(yx) are independent of yy.

Using a similar method as for hidden variables, we can
show that postselection with this form of loss cannot change
the form of probability distributions obtained, either for the
case of entangled or unentangled states. In particular, the result
is as in the following theorem.

Theorem 3. For a Bell experiment on a quantum mechanical
system, provided the loss is restricted by

EF. p) = &) [ | Esvo), (34)
k

M (33)

the set of postselected probabilities it is possible to obtain
without entanglement {5(5|y, p)} is identical to that which
can be obtained without postselection or entanglement, and
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the set of postselected probabilities it is possible to obtain with
entanglement is identical to that which can be obtained without
postelection but with entanglement (provided no efficiency is
Z€ero0).

Proof. We define new measurement operators as

M}

= (M )™M, (M )™, (35)

These measurement operators now give unit efficiency (so
there is no postselection). We also define

M2 pM=12

: 36
Tr(M~12pM~172) (36)

o=

where M is defined as in Eq. (33). Because we restrict
to the case of incomplete loss, the measurement operators
are positive and can be inverted. The new measurement
operators and states give exactly the same probabilities without
postselection as the original measurement operators and states
did with postselection.

Furthermore, because M is a local operator, it cannot
produce entangled states from unentangled states. Therefore
the postselected Bell experiment with an unentangled state
gives postselected probabilities identical to the non-post-
selected probabilities for a different Bell experiment with
different measurement operators and a different unentangled
state p. |

This result means that, for an unentangled state, all Bell
inequalities must still be satisfied. This is exactly as we expect,
because unentangled states may be regarded as equivalent to
hidden variables. Similarly, inequalities that hold for entangled
states, such as Tsirelson’s bound, will be unaffected by the
postselection. It is easily checked that schemes for violating
Tsirelson’s bound [25-27] also violate Eq. (31).

For CHSH-Bell inequalities, it would be expected that
Eq. (31) is also a necessary condition due to the result for
hidden-variable theories. However, it does not directly follow,
and necessity needs to be proven separately. This is because
one cannot arbitrarily choose the probabilities p(s|y, x) for
given efficiencies. Therefore it is not necessarily possible to
achieve the maximum value of Eq. (10), as in the case of a
general hidden-variable theory. Nevertheless, it is possible to
show the result in the following theorem.

Theorem 4. For a quantum mechanical system, the condition
that the efficiency for each party factorizes as

EF. p) = &) [ | Es(ro), (37)
k

is necessary and sufficient for |5| < 2 to be satisfied for all
probabilities py(E|yx, x) (provided no efficiency is zero).

Proof. The sufficiency follows immediately from Theorem
3, so it only remains to show necessity. The condition in the
theorem is equivalent to Eq. (32), so we show necessity for
Eq. (32). First consider the case where Eq. (32) is violated. In
that case, either M, /& ;s(a) is dependent on o, or Mg /Ers(B)
is dependent on g (or both). We omit the subscripts 1 and 2
in the notation M, and Mg for simplicity. The party is simply
indicated by the symbol used for the measurement setting
(o for party 1 and g for party 2).

PHYSICAL REVIEW A 81, 012109 (2010)

If M, /& s(a) (for example) is not independent of «, then
there exist orthogonal states |¢g) and |¢;) such that

(0ol Mal@o) (@11 Mal@1) # (@olMalpo) (@1l Male1). (38)

This result may be proven in the following way. Let us assume
that all orthogonal states give equality in (38). Then, for any
orthogonal basis {|¢;)}, we have

(0jIMalo;) = e IMale;), (39

for some . Therefore Tr(M,) = uTr(M ). Now we can take

{|g0})} to be the basis which diagonalizes M, — uM,. Then
we have

(@)1 Male)) = 1 {9} Ml (40)
so Tr(M,) = uw'Tr(M ). Because Tr(M,) is nonzero (these are

positive operators), we have u = u’. Therefore the diagonal
elements of M, — uM, must be zero in the basis {|<p})}. As
this is the basis which diagonalizes M, — uM 4, we must have
M, = uM 4. Hence we find that equality in (38) implies M, =
UM 4, soif M, is not proportional to M 4, then there must exist
orthogonal states |¢p) and |@;) such that (38) is satisfied.

We obtain the exact equivalent result if Mg/E>5(B) is not
independent of B. Therefore, if Eq. (32) is violated, we can
select |¢;) and | x;) such that

(0ol Malwo) (@11 Male1) < (@olMalpo){e1lMaler), “n
<

(xolMp| xo){x11MBplx1) < (xolMplx0){x1IMplx1),

with strict inequality in at least one of these cases. We therefore
have

(@0l Mal@o) (@11 Maler) (xolMp| x0)(x11MBplx1)
< {@olM4lpo) (@1 Malo1) {(xolMplxo) (x1I1Mplx1). (42)

Now consider the density operator

o = (@) {wol ® [x0) {(xol + le1){e1l ® [x1){x1D) /2. (43)

For this density operator

1 21: { (AMa);(AMg);
2 Tr[(M4 ® Mp)p]
<AMa>j <AMB>j _
Tr[(Mo @ Mp)p]l  Tr[(Ma ® My)p]
where AM; , = M,jyk — M, and (---); indicates the ex-
pectation value using the state |¢;) (for Alice) or |x;) (for

Bob). Given the M, ,,, consider the measurement operators
for the individual results given by

(AMy) i (AM,);
Tr[(M4 @ My)p]

(AM,) i {AMy); }

(44)

My = My, = |@o) (@ol{Ma)o,
M; = O, Ma_ = Ma - |(P0><<P0|<Ma>0,
+ + (45)
Mg = lgo)(pol(Mg)o, M, = Mp,
My = Mp — |po){@ol{(Mp)o, M, =0.
Using these measurement operators gives
(AM,); = (1) (Ma);, (AMa); = (Ma);, 46)
(AM,); = (My);,  (AMp); = (1) (Mp),.
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This gives the postselected Bell quantity as

B—d_ 2(My)o(Mp)o
(Ma)o{Mp)o + (Ma)1 (Mp)
_ 2(Ma) 1 (Mp) . @7
(Ma)o(Mp)o + (Ma) 1 (Mp)
Equation (42) may be rearranged to give
(Ma)o{Mp)o
(Ma)o(Mp)o + (Ma)1(Mp)1
" (Ma)1(Mpg), TS

(Ma)o{Mp)o + (Ma)1{Mp)

We therefore obtain B > 2.

Thus we find that, if Eq. (31) is not satisfied, for given
M, there exists a separable state and a set of measurement
operators M,fyk such that B > 2. Equation (31) is therefore
a necessary condition for the CHSH-Bell inequality to be
satisfied for separable states. As Eq. (31) is equivalent to the
condition in the theorem, we have proven both necessity and
sufficiency as required. |

For entangled states, 53 is limited by Tsirelson’s bound
of 24/2 [24]. As explained above, the restriction given by
Eq. (31) is sufficient for Tsirelson’s bound to be satisfied due
to the result in Theorem 3. However, it turns out that it is not
necessary. In particular, we find that Tsirelson’s bound is not
violated if there is no loss on one side and moderate loss on
the other side. Let M, = M4 = M, = 1, and let

My = [(1) 2] (49)

We have performed numerical maximizations over the mea-
surements and states for a range of values of p, and the results
are shown in Fig. 1. For small values of p, below about 0.17,
there is violation of Tsirelson’s bound, but for larger values no
violation of Tsirelson’s bound is achieved. This indicates that
there is not a simple necessary and sufficient condition in the
case of Tsirelson’s bound. Whether Tsirelson’s bound can be
violated depends on the particular value of the loss.

An interesting fact is that if the condition (31) is violated
for both parties, in the sense that M ,, /Exs(yi) is dependent

4
3.8
3.6
3.4f
3.2t

N 3t
2.8f
2.6f
2.4r
2.2f

2 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1

p

FIG. 1. The numerically found maximal values of B with M, =
My = M, =1 and My = diag(1, p). Tsirelson’s bound is shown as
the dotted line for comparison.
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on y; for both Alice and Bob, then it is always possible to
find measurements such that Tsirelson’s bound is violated. A
scheme for doing this is presented in Appendix B.

VI. POSTSELECTION THAT VIOLATES TSIRELSON’S
BOUND

One motivation for this work was to determine forms of
loss that can violate Tsirelson’s bound while ensuring that
the CHSH-Bell inequality is still valid, in order to generalize
Ref. [28]. The result of the previous section is that the form of
postselection that is necessary for the CHSH-Bell inequality
to hold for unentangled states (as shown in Theorem 4) also
implies that Tsirelson’s bound holds for entangled states (as
follows from Theorem 3).

This raises the question of how the postselection in Ref. [28]
differs from the postselection used here. The difference is
that the postselection in Ref. [28] relies on knowledge of the
hidden variables. That is, the postselection in Ref. [28] would
not actually be performed in an experiment, it is a method of
deriving three-party inequalities that can be experimentally
tested, as in Ref. [29]. If one attempted to perform the
postselection without knowledge of the hidden variables or
state, then one could obtain a violation of the Bell inequality
with an unentangled state (see Appendix C). We do not use
that approach here and simply allow postselection that may
depend on the state and measurement setting.

A crucial subtlety in our results is that the condition (31) is
necessary for the CHSH-Bell inequality to be satisfied for un-
entangled states, provided we consider arbitrary measurement
schemes for the given form of loss. This does not eliminate
the possibility that there are particular measurement schemes
with postselection such that the Bell inequality is satisfied for
unentangled states but Tsirelson’s bound may be violated for
entangled states. We consider such a scheme in this section.

We emphasize that this scheme does not violate the Bell
inequality with unentangled states provided the measurements
are acting as expected. But, if there is an underlying hidden
variable theory, or equivalently if the measurements are not
acting as expected on the underlying quantum state, then the
CHSH-Bell inequality can be violated without entanglement.

The advantage of this postselection is that it also increases
the Bell quantity that may be obtained with entanglement.
The standard result that the efficiency must be at least
2(v/2 — 1) ~ 82.8% with maximally entangled states [18] is
based on the assumption that Tsirelson’s bound still holds
for entangled states. If the Bell quantity is also enhanced for
entangled states, then the efficiency may be lower before the
value that is possible with a LHV theory reaches that possible
with entangled states.

The example we consider is where Alice and Bob share the
two-qubit entangled state

V)12 = N(lu)1|u)z — [v)i]v)2), (50

where N is the normalization factor. The states |u) and |v) are
assumed to be nonorthogonal, with the real inner product k. We
define alocal transformation R(6) which acts as R(0)|u) = |u)
and R(6)|v) = €'|v).

The transformation R() is nonunitary and cannot be
realized deterministically with a nonzero k. Alice performs
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the local operation R(6), and Bob applies R(¢). The different
measurement settings for Alice and Bob are achieved by using
different rotation angles 6 and ¢. This nondeterministically
transforms the state | _)1, to

[ )12 = N'(lu)ilu)z — €T )|v),). (51)

Alice and Bob then perform orthogonal measurements on their
respective qubits using the basis |+) = Ni(Ju) & |v)), and
there are four possible cases of the combined measurement
results. The probabilities for these four cases are
(14 k)*[1 — cos(d + ¢)]
4[1 — k2 cos(8 + ¢)]
(1 — k»)[1 + cos(d + ¢)]
s T 07 == ) 9, =
Pl =10, 8) = pl= H10.$) = == 5 e
(1 — k)*[1 — cos(d + ¢)]
4[1 — k2% cos(0 + ¢)]

where p(si, 5210, ¢) = [(¥ |s1)1152)2]%
The Bell function B is then obtained as

B = C(0a, )+ C(0a, #p) + C(Oa, p5) — C(Oa, Pp), (53)

where

p(+,+0, ) =

El

3

p(_’_|9’ ¢))= ) (52)

CO,¢) = p(+,+10,¢) — p(+, =10, ¢)
—p(—=, +0,¢) + p(—, =16, ¢)
k> —cos(6 + )
T 1—«k2cos(@ +¢)

The maximum is obtained for
Oa+0s+¢p+¢p) =0, — 04 = p — Pp = O, (55)

for some parameter ®. The Bell function then depends only
on O:

(54)

B=3C(©/2,0)—C(30/2,0). (56)

There does not appear to be an analytic solution for ®, but a
good approximation is given by ® = w[17 4 cos(w«)]/12.

To determine the loss that is required for the operation R(6)
on |u) and |v), consider the singular value decomposition [36]
of the matrix representing R(9), i.e., U WU 1 (omitting a
global phase) where

U — 1 |: —ib r:I:d:| 57)
=7 P2+ (r+d?l—xd ib ]|
o0

(58)
0o
with b = sin O[T+ )/(1T —&) — VA —x) /A F 1), d =

4k sin(0/2)/(1 —k?), a =2+ «d, and r = +/a? — 4. This
therefore gives the minimum detector efficiency as

. a—r 59
n—,/a+r- (59)

The maximum value of B possible with LHV theories is then
4/n — 2 [18].

The values of the quantity B for the initial state |y_);2,
as well as the maximum values for separable states, and the
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4
7
7z
g
3.5¢ e
.
e
3f .
7.
) .7 Tsirelson’s bound
q 2.5f s
2r T .
-7 classical bound
1.5F -~ -

1 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1
K

FIG. 2. The CHSH-Bell quantity 3 using postselection. The value
for |¥_)1, is shown as the solid line, the maximum value for separable
states is shown as the dashed line, and the maximum value for LHV
theories is shown as the dotted curve.

maximum values for LHV theories, are plotted in Fig. 2. The
maximum value for separable states was obtained by numerical
optimization, and the maximum value for LHV theories was
obtained using the formula 4/n — 2. For |{_)», the value
for entangled states varies from Tsirelson’s bound for k = 0
to a maximum of 4 in the limit x — 1. On the other hand, B
initially has a maximum of +/2 for separable states. It increases
with «, but still does not exceed 2 for « < 0.357. For this value
of k, B is almost 3 (2.966) for |{_)1,. On the other hand,
the maximum value of 53 for LHV theories increases from 2
for k = 0 (no loss) and crosses the line for entangled states at
k = (0.124. At this value of k, n ~ 82.6%, slightly below the
limit of 82.8% derived in Ref. [18].

We have also considered more general measurements that
do not have the simple interpretation given above. These
measurements are numerically optimized to maximize the
value of B for entangled states with a given level of loss. The
results for this scheme are shown in Fig. 3. For this numerically
optimized scheme the value of B can be greater than 3 (3.0046)
for entangled states before it reaches 2 for separable states. The

4

\

N
N
35
N\
N
A
3r A
N
Tsirelson’s bound” ~
X 2.5¢ N

2r
classical bound ~

1.5 S

1

0 01 02 03 04 05 06 07 08 09 1
p

FIG. 3. The CHSH-Bell quantity B using postselection with
a numerically optimized scheme. The value for the maximally
entangled state is shown as the solid line, the maximum value for
separable states is shown as the dashed line, and the maximum value
for LHV theories is shown as the dotted curve.
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value of n when the value of B for LHV theories reaches that
for entangled states is slightly lower than before, at 82.4%.

Methods for general nonunitary transformations such as
R(6) have been presented in Ref. [37], and methods for
performing single-qubit nonunitary transformations in optical
systems in Ref. [38]. An experiment for our proposal can
be performed using current technology with the photon-
polarization qubit basis, namely | H) and | V), where | H) is the
horizontal-polarization state of a photon and | V') vertical. The
two nonorthogonal states |u) and |v) can be defined as |u) =
AH) ++/1—2A2|V) and |v) = A|H) —+/1 — A2|V), where
2 is assumed to be a real value larger than 1/+/2. In this
case, the orthogonal basis states, |+) = |H) and |—) = |V},
are obtained and « = (u|v) = 21% — 1. The entangled state
|¥_)1o turns out to be equal to N(Ju)i|u)s — |v)i|v)2) =
(H)1|V)2 + |V>1|H)2)/«/§. It is well known that such a
two-qubit entangled state can be generated using spontaneous
parametric down-conversion [39].

In the singular value decomposition R(6) = U WU', the
U, are unitary and W is diagonal. The unitary operations
correspond to single qubit rotations and can be implemented
using linear optical elements [40]. After Ui is performed on
the corresponding qubit, the nonunitary component W can
be achieved using selective absorption at one polarization.
Provided the photon is detected in the final measurement, W
will have been successfully applied to the qubit. Then U, is
applied as discussed above. The final measurement is then just
ameasurement in the polarization basis, which can be achieved
using a polarizing beam splitter and photodetectors.

VII. CONCLUSIONS

Our results provide clear guidelines for determining if the
sampling is fair in any particular Bell experiment. If the goal is
simply to demonstrate entanglement, rather than disprove LHV
theories, then the condition required is given by Eq. (31), which
can be experimentally tested. If it can be demonstrated to hold,
then any violation of Bell inequalities is due to entanglement.
This is relevant to quantum key distribution (QKD), where
security may be proven by violation of Bell inequalities
[41-45]. In cases where there is loss, but the sampling is tested
and found to be fair, then this indicates that the QKD should
still be secure. On the other hand, unfair sampling can break
the security of QKD [46].

In the case where hidden variables are allowed, then the
relevant condition is that the efficiency factorizes as in Eq. (7).
Any condition that depends on the hidden variables can not
be proven to hold, because it is possible that it might be
violated for values of the hidden variable that it is not possible
to prepare. However, it is possible to falsify it. The great
advantage of providing a necessary condition, as we have done,
is that if it can be shown not to hold, then the sampling is shown
to be of a form that invalidates the CHSH-Bell inequality. In
contrast, if the condition that is tested is not necessary, then
testing it is not useful. Showing that it does not hold does
not show that the sampling is of a form that invalidates the
CHSH-Bell inequality, and it cannot be conclusively shown
to hold. Thus our results put testing of the sampling in Bell
experiments [47] on a rigorous basis.

PHYSICAL REVIEW A 81, 012109 (2010)

These results also cast light on the effort to develop ways of
enhancing Bell violations using postselection, as discussed
in Refs. [28,48]. Here we have found that the condition
on the loss that is necessary to prevent violation of the
CHSH-Bell inequality with postselection is also sufficient
to ensure that Tsirelson’s bound is not violated. Our results
show that this form of sampling cannot be used to enhance
violation of Bell inequalities beyond what is possible without
postselection.

This suggests that is should not be possible to violate
Tsirelson’s bound with postselection while retaining a valid
Bell inequality. On the other hand, it is possible for post-
selection to enhance the violation of Bell inequalities up
to Tsirelson’s bound without invalidating them. For exam-
ple, Procrustean entanglement concentration [34] has been
demonstrated to enhance the violation of Bell inequalities [35].
Because Procrustean entanglement concentration corresponds
to fair sampling, this postselection does not invalidate the
Bell inequalities for unentangled states and does not lead to
violation of Tsirelson’s bound for entangled states.

Our results do not entirely rule out the possibility of
violating Tsirelson’s bound while the CHSH-Bell inequality
still holds for unentangled states. However, this requires
examining the measurement used rather than simply relying
on the form of loss. We have found schemes that allow the Bell
quantity to be as large as 3 before the CHSH-Bell inequality is
violated with separable states. These schemes also allow the
efficiency to be below the limit of 82.8% derived by Ref. [18]
before the value of B possible with LHV theories reaches that
obtained for entangled states. This is because it is assumed
in Ref. [18] that the loss cannot enhance violation of the Bell
inequality beyond Tsirelson’s bound.
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APPENDIX A: EFFICIENCY INDEPENDENT OF THE
MEASUREMENT SETTING FOR ONE STATE

As an example of a case where |B| > 2 when the efficiency
is independent of the measurement settings for the state under
consideration, but Eq. (31) is violated, consider the state

p = 5(100)(00] + [11)(11]). (AL)

For Bob we have the measurement operators

el el w

M;:[g ﬂ M,j:[(l) 8] (A3)

That is, Bob either always returns the result +, or performs a
measurement in the computational basis, and returns + or —
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for 0 or 1, respectively. Alice’s measurement operators are
- _ 10 0 +_ |10
O L A

__Jo o . oo
o L A

That is, for measurement A Alice returns the result + for |0) or
there is failure for |1). For measurement a Alice returns + for
|1) or failure for |0). Experimentally this could correspond to
a beam splitter sending two different polarizations to different
photodetectors, one of which always fails.

For this example, the probability of success is always
1/2, and we obtain B = 4. Thus we obtain the maximum
possible violation of the Bell-CHSH inequality and Tsirelson’s
bound with a separable state and with equal probabilities
of success for each measurement setting. This demonstrates
that equal probabilities of success for each measurement
setting for one state does not imply that the loss preserves
the CHSH-Bell inequality. It is also important to note that
unequal efficiencies for detectors is sufficient to invalidate
the CHSH-Bell inequality and Tsirelson’s bound. This is an
important case, because one would not expect detectors to be
identical experimentally.

We may also use this case to provide a counterexample
which demonstrates that the condition (31) does not im-
ply (7). Let the hidden variable take the values O and 1,
and give the probabilities of the measurement results and
successes as above. However, take the quantum system to
be one-dimensional, so there are no measurable features. The
probability of failure for all combinations of measurement
settings is equal to 1/2, regardless of the state, so it is clear
that (31) is satisfied. However, the hidden variables do not
satisfy (7), and the Bell inequality is violated. In fact, for
this hidden variable theory, Tsirelson’s bound is violated as
well, despite (31) being satisfied. This is because the proof in
Sec. V assumes that probabilities are obtained using quantum
measurement theory, not a hidden variable theory.

(A4)

(A5)

APPENDIX B: VIOLATION OF TSIRELSON’S BOUND

Here we show that Tsirelson’s bound may be violated when
M.,/ Es (i) is dependent on y; for both Alice and Bob. Note
that this is a slightly stronger condition than violation of (31),
because (31) can be violated with dependence on just one side.

Define the unitary operators U, and Up to be those that
diagonalize (M,)~">M 4(M,)~'/? and (M})~'/>Mp(M,)~"/?,
respectively. We define the new operators

= Ua(M)" 2 M4 (M)~ 2U
47 max[eig(M,)~ /2 MA(M,)~ 2]

it = _UaMa)™ P ME(M,) U
A7 max[eig(Mo) "2 M4 (M,)~'/?]’

. Up(My)PMp(My) U
~ max[eig(M,)~/2Mg(M,)~ /2]’

P Up(My)~ 2 MEMy) " 2U),
~ max[eig(M) "2 Mp(Mp)~1/2]’
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My = Us(M) ™My (M) U] = 1,

MF = Us(M) ™" PMEM) U],
My = Ug(My)™" 2 My(My)~ UL =1,

MF = Ug(My)™" > MF (M)~ U (B1)
In addition, the system state p is replaced with

(Us @ Up)(M, ® Mp)'2p(M, ® My)"2 (UL @ UJ)
Tr{(M, ® M,)p] '

5

(B2)
The measurements in terms of these new operators on the new
state 0 must give the same normalized C(«, 8) as the original
operators, and therefore the same value for the CHSH-Bell
quantity. In addition, the operators My, M,, My, and M, are
all diagonal (and M, = 1 and M), = 1).

The normalizations given for M 4, Mjf, Mp,and M gt ensure
that these operators do not have eigenvalues larger than 1.
The unitaries U, and Upg can also be taken to be those that
sort the eigenvalues in decreasing order. Now we restrict to a
two-dimensional subspace where M4 and My are of the form

1 0

My = , B3

A (0 PA> ( )
1 0

Mp = . B4

B (0 PB) ( )

Consider taking the state § to be a maximally entangled state
p =)l

BS)

[¥) = —i(100) 4 [11))/2 4 (|01) + [10))/2.
We can also take the operators M= such that
AMy =—-MY*zZM),
AM, =Y,
- 1
AMg = —M}*(Y — Z)M))?

V2 b

i 1
AM, = —

Y + 2). B6
ﬁ(+) (B6)

Here Y and Z are the usual Pauli operators o, and o,. Using
these operators we find that

Te(AMAAMgp)
Tr(MaMpp)
1 =pa+2(1+ pa)y/Ps + (pa—Dps
B V2(1+ pa) + pp)
Tr(AMsAM,p) 1
Te(MAMyp)
Tr(AM,AMpp) 1
T(M,Mpp) V2
THAMAMp) _ 1 (B7)
Tr(M, Mp,p) V2
The Bell quantity is then

Be2vi4 ﬁ(l—\/ﬁ)(\/p_s—m). (B8)
(I+ pa) + pp)

S

[y
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This is greater than Tsirelson’s bound provided that ps <
VP <L

In the case that pp < /pa < 1, it is possible to obtain
violation of Tsirelson’s bound by exchanging the roles of Alice
and Bob. That is,

_ 1
AM, = EM:;/z(Y — M2
_
AM, = —(Y + 2),
V2
AMg = —My*ZM})?,
AM, =7, (B9)

SO

B_2J5+Jﬂbmﬁﬂmﬁi—pw

(I+pd+pp)

Hence, provided p4 # 1 and pp # 1 (s0 My, /Exs(vi) is

dependent on y; for both Alice and Bob), it is possible to

violate Tsirelson’s bound. If one of p,4 or pp is equal to 1, then
this approach does not yield violation of Tsirelson’s bound.

(B10)

APPENDIX C: POSTSELECTION OF REF. [28]

Here we show that, if the postselection in Ref. [28] is used
without knowledge of the state or hidden variables, then it
allows violation of the CHSH-Bell inequality with unentan-
gled states. Reference [28] considers the Greenberger-Horne-
Zeilinger (GHZ) state |¥) = (|+++), +|—— —)y)/«/i,
where |£), are Y eigenstates. The qubits are labeled 7, j, and k
according to the following prescription. When Z is measured
on each qubit, either two results are —1 and one is +1 or all
three are +1. If two results are —1, the corresponding qubits
are taken to be i and j. If all three results are +1, the labels i,
J, and k are assigned randomly.

In practice, Z is not always measured on all three qubits,
so it is not possible to apply this method directly. Instead,
one could force qubit 3 to be k by measuring Z on it and
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postselecting on a measurement result of 1 (as proposed by
Ref. [28]). Alternatively, one could randomly select a qubit
and force it to be k by this method.

The form of the CHSH-Bell inequality in Ref. [28] is | B| <
2, with

By =C(Zi, Zj)—xC(Z;, Xj))—x, C(X;, Z;)—C(X;, X ).
(C1)

Here subscripts are used to indicate the operator acting on
the corresponding qubit, and x; is the result which would be
obtained by measuring X;. The difficulty is that X; is not the
quantity that is measured on qubit k. If the results were given
by a hidden variable theory, then x; may be something which
can be determined from the hidden variables.

In practice, hidden variables are not known, so the inequal-
ity (C1) is not something which can be tested directly. One
approach suggested in Ref. [28] is to use knowledge of the
state, and the measurement results on qubits i and j, to infer
Xxr. One takes x; to be the negative of the product of the
measurement results for qubits i and j (if X is measured
on one and Z on the other). Because of this method for
selecting xy,

-xC(Z;, Xj) = —xC(X;, Z;) = 1. (C2)

For the GHZ state, one also obtains C(Z;, Z;) =1 and
C(Xi, XI) = —1, SO BX =4.

On the other hand, if the state is not known, but is still
assumed to be the GHZ state, then B, > 2 can be obtained
with an unentangled state. Consider, for example, the state

p == = H)l= =+ + =+ =)=+ |
+ 4 — =)ol — =+ [+ )+ +D. (C)

Itis found that, regardless of which qubit is taken to be k, the Z;
and Z; measurements are perfectly correlated, so C(Z;, Z;)
= 1. There are no correlations in the X measurements, so
C(X;, X;) =0, and Eq. (C2) still holds (because that is due
to the method of determining x;). We therefore find B, = 3,
which violates both the Bell inequality and Tsirelson’s bound.
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