52 research outputs found

    Consumption of carotenoids not increased by bacterial infection in brown trout embryos (Salmo trutta).

    Get PDF
    Carotenoids are organic pigment molecules that play important roles in signalling, control of oxidative stress, and immunity. Fish allocate carotenoids to their eggs, which gives them the typical yellow to red colouration and supports their resistance against microbial infections. However, it is still unclear whether carotenoids act mainly as a shield against infection or are used up during the embryos' immune defence. We investigated this question with experimental families produced from wild-caught brown trout (Salmo trutta). Singly raised embryos were either exposed to the bacterial pathogen Pseudomonas fluorescens or sham-treated at one of two stages during their development. A previous study on these experimental families reported positive effects of egg carotenoids on embryo growth and resistance against the infection. Here, we quantified carotenoid consumption, i.e. the active metabolization of carotenoids into compounds that are not other carotenoid types, in these infected and sham-infected maternal sib groups. We found that carotenoid contents mostly decreased during embryogenesis. However, these decreases were neither linked to the virulence induced by the pathogen nor dependent on the time point of infection. We conclude that egg carotenoids are not significantly used up by the embryos' immune defence

    Kinetics of neuropeptide Y, catecholamines, and physiological responses during moderate and heavy intensity exercises.

    Get PDF
    Neuropeptide Y 1-36 (NPY1-36) is a vasoconstrictor peptide co-secreted with norepinephrine (NE) by nerve endings during sympathetic activation. NPY1-36 potentiates NE action post-synaptically through the stimulation of the Y1 receptor, whereas its metabolite NPY3-36 resulting from DPP4 action activates Y2 presynaptic receptors, inhibiting NE and acetylcholine secretion. The secretions of NPY1-36 and NPY3-36 in response to sympathetic nervous system activation have not been studied due to the lack of analytical techniques available to distinguish them. We determined in healthy volunteers NPY1-36, NPY3-36 and catecholamine kinetics and how these neurotransmitters modulate the physiological stress response during and after moderate- and heavy-intensity exercises. Six healthy males participated in this randomized, double-blind, saxagliptin vs placebo crossover study. The volunteers performed an orthostatic test, a 30-min exercise at moderate intensity and a 15-min exercise at heavy intensity each followed by 50 min of recovery in two separate sessions with saxagliptin or placebo. Oxygen consumption (V̇O <sub>2</sub> ), ventilation and heart rate were continuously recorded. NE, epinephrine, NPY1-36 and NPY3-36 were quantified by tandem mass spectrometry. We found that exercise triggers NPY1-36 and NE secretion in an intensity-dependent manner and that NE returns faster to the baseline concentration than NPY1-36 after exercise. NPY3-36 rises during recovery parallel to the decline of NPY1-36. Saxagliptin reverses the NPY1-36/NPY3-36 ratio but does not affect hemodynamics, nor NPY1-36 and catecholamine concentrations. We found that NPY1-36 half-life is considerably shorter than previously established with immunoassays. NPY1-36 and NE secretions are finely regulated to prevent an excessive physiological Y1 stimulating response to submaximal exercise

    Maternal allocation of carotenoids increases tolerance to bacterial infection in brown trout.

    Get PDF
    Life-history theory predicts that iteroparous females allocate their resources differently among different breeding seasons depending on their residual reproductive value. In iteroparous salmonids there is typically much variation in egg size, egg number, and in the compounds that females allocate to their clutch. These compounds include various carotenoids whose functions are not sufficiently understood yet. We sampled 37 female and 35 male brown trout from natural streams, collected their gametes for in vitro fertilizations, experimentally produced 185 families in 7 full-factorial breeding blocks, raised the developing embryos singly (n = 2960), and either sham-treated or infected them with Pseudomonas fluorescens. We used female redness (as a measure of carotenoids stored in the skin) and their allocation of carotenoids to clutches to infer maternal strategies. Astaxanthin contents largely determined egg colour. Neither egg weight nor female size was correlated with the content of this carotenoid. However, astaxanthin content was positively correlated with larval growth and with tolerance against P. fluorescens. There was a negative correlation between female skin redness and the carotenoid content of their eggs. Although higher astaxanthin contents in the eggs were associated with an improvement of early fitness-related traits, some females appeared not to maximally support their current offspring as revealed by the negative correlation between female red skin colouration and egg carotenoid content. This correlation was not explained by female size and supports the prediction of a maternal trade-off between current and future reproduction

    Synthesis of diphenoxyadamantane alkylamines with pharmacological interest.

    Get PDF
    In this work, the synthesis and the pharmacological evaluation of diphenoxyadamantane alkylamines Ia-f and IIa-f is described. The new diphenoxy-substituted adamantanes share structural features present in trypanocidal and antitubercular agents. 1-Methylpiperazine derivative Ia is the most potent against T. brucei compound, whilst its hexylamine congener IIf exhibits a significant antimycobacterial activity

    Accurate and rapid antibiotic susceptibility testing using a machine learning-assisted nanomotion technology platform.

    Get PDF
    Antimicrobial resistance (AMR) is a major public health threat, reducing treatment options for infected patients. AMR is promoted by a lack of access to rapid antibiotic susceptibility tests (ASTs). Accelerated ASTs can identify effective antibiotics for treatment in a timely and informed manner. We describe a rapid growth-independent phenotypic AST that uses a nanomotion technology platform to measure bacterial vibrations. Machine learning techniques are applied to analyze a large dataset encompassing 2762 individual nanomotion recordings from 1180 spiked positive blood culture samples covering 364 Escherichia coli and Klebsiella pneumoniae isolates exposed to cephalosporins and fluoroquinolones. The training performances of the different classification models achieve between 90.5 and 100% accuracy. Independent testing of the AST on 223 strains, including in clinical setting, correctly predict susceptibility and resistance with accuracies between 89.5% and 98.9%. The study shows the potential of this nanomotion platform for future bacterial phenotype delineation

    The small protein SCO2038 controls Streptomyces coelicolor differentiation by modulating tryptophan biosynthesis

    Get PDF
    Background In Streptomyces coelicolor amino acid metabolism is an important clue of the morphological and physiological differentiation program and, differently from other bacteria, the expression of amino acid biosynthetic genes is not subjected to endproduct negative regulation. In some amino acid biosynthetic gene clusters, such as tryptophan, histidine and proline, small orfs (about 100-300 nucleotides) were identified. These small orfs, such as sco2038, encode proteins whose cellular role have to be elucidated to highlight possible novel and crucial molecular mechanisms controlling amino acid synthesis and, thus, differentiation program. Objectives The aims of this work are: 1. the understanding of the effects exerted by tryptophan on primary metabolism, morphological differentiation and antibiotic production; 2. the study and characterization of the SCO2038 function as modulator of tryptophan biosynthesis. Methods - Differential proteomic analysis based on 2D-DIGE and MS procedures. - SEM analysis. - Generation and characterization of sco2038 mutants - Identification of potential SCO2038 interaction partners by pull down assay coupled with MS identification and Bacterial Adenylate Cyclase Two Hybrid System. - qRT-PCR analysis. Conclusions The obtained results revealed that tryptophan controls the expression of metabolic and regulatory proteins and promotes aerial mycelium formation, spores production and actinorhodin antibiotic biosynthesis. Moreover, the small orf sco2038, encodes a 7 KDa protein playing a key role in modulating tryptophan biosynthesis and thus, morphological differentiation. In the light of these results we propose to rename sco2038 as trpM, the gene encoding the tryptophan biosynthesis Modulator TrpM

    Discovery and Biosynthesis of Gladiolin: A Burkholderia gladioli Antibiotic with Promising Activity against Mycobacterium tuberculosis.

    Get PDF
    An antimicrobial activity screen of Burkholderia gladioli BCC0238, a clinical isolate from a cystic fibrosis patient, led to the discovery of gladiolin, a novel macrolide antibiotic with potent activity against Mycobacterium tuberculosis H37Rv. Gladiolin is structurally related to etnangien, a highly unstable antibiotic from Sorangium cellulosum that is also active against Mycobacteria. Like etnangien, gladiolin was found to inhibit RNA polymerase, a validated drug target in M. tuberculosis. However, gladiolin lacks the highly labile hexaene moiety of etnangien and was thus found to possess significantly increased chemical stability. Moreover, gladiolin displayed low mammalian cytotoxicity and good activity against several M. tuberculosis clinical isolates, including four that are resistant to isoniazid and one that is resistant to both isoniazid and rifampicin. Overall, these data suggest that gladiolin may represent a useful starting point for the development of novel drugs to tackle multidrug-resistant tuberculosis. The B. gladioli BCC0238 genome was sequenced using Single Molecule Real Time (SMRT) technology. This resulted in four contiguous sequences: two large circular chromosomes and two smaller putative plasmids. Analysis of the chromosome sequences identified 49 putative specialized metabolite biosynthetic gene clusters. One such gene cluster, located on the smaller of the two chromosomes, encodes a trans-acyltransferase (trans-AT) polyketide synthase (PKS) multienzyme that was hypothesized to assemble gladiolin. Insertional inactivation of a gene in this cluster encoding one of the PKS subunits abrogated gladiolin production, confirming that the gene cluster is responsible for biosynthesis of the antibiotic. Comparison of the PKSs responsible for the assembly of gladiolin and etnangien showed that they possess a remarkably similar architecture, obfuscating the biosynthetic mechanisms responsible for most of the structural differences between the two metabolites

    Reconstructing promoter activity from Lux bioluminescent reporters

    Get PDF
    The bacterial Lux system is used as a gene expression reporter. It is fast, sensitive and non-destructive, enabling high frequency measurements. Originally developed for bacterial cells, it has also been adapted for eukaryotic cells, and can be used for whole cell biosensors, or in real time with live animals without the need for euthanasia. However, correct interpretation of bioluminescent data is limited: the bioluminescence is different from gene expression because of nonlinear molecular and enzyme dynamics of the Lux system. We have developed a computational approach that, for the first time, allows users of Lux assays to infer gene transcription levels from the light output. This approach is based upon a new mathematical model for Lux activity, that includes the actions of LuxAB, LuxEC and Fre, with improved mechanisms for all reactions, as well as synthesis and turn-over of Lux proteins. The model is calibrated with new experimental data for the LuxAB and Fre reactions from Photorhabdus luminescens --- the source of modern Lux reporters --- while literature data has been used for LuxEC. Importantly, the data show clear evidence for previously unreported product inhibition for the LuxAB reaction. Model simulations show that predicted bioluminescent profiles can be very different from changes in gene expression, with transient peaks of light output, very similar to light output seen in some experimental data sets. By incorporating the calibrated model into a Bayesian inference scheme, we can reverse engineer promoter activity from the bioluminescence. We show examples where a decrease in bioluminescence would be better interpreted as a switching off of the promoter, or where an increase in bioluminescence would be better interpreted as a longer period of gene expression. This approach could benefit all users of Lux technology

    Cascade of Neural Events Leading from Error Commission to Subsequent Awareness Revealed Using EEG Source Imaging

    Get PDF
    The goal of the present study was to shed light on the respective contributions of three important action monitoring brain regions (i.e. cingulate cortex, insula, and orbitofrontal cortex) during the conscious detection of response errors. To this end, fourteen healthy adults performed a speeded Go/Nogo task comprising Nogo trials of varying levels of difficulty, designed to elicit aware and unaware errors. Error awareness was indicated by participants with a second key press after the target key press. Meanwhile, electromyogram (EMG) from the response hand was recorded in addition to high-density scalp electroencephalogram (EEG). In the EMG-locked grand averages, aware errors clearly elicited an error-related negativity (ERN) reflecting error detection, and a later error positivity (Pe) reflecting conscious error awareness. However, no Pe was recorded after unaware errors or hits. These results are in line with previous studies suggesting that error awareness is associated with generation of the Pe. Source localisation results confirmed that the posterior cingulate motor area was the main generator of the ERN. However, inverse solution results also point to the involvement of the left posterior insula during the time interval of the Pe, and hence error awareness. Moreover, consecutive to this insular activity, the right orbitofrontal cortex (OFC) was activated in response to aware and unaware errors but not in response to hits, consistent with the implication of this area in the evaluation of the value of an error. These results reveal a precise sequence of activations in these three non-overlapping brain regions following error commission, enabling a progressive differentiation between aware and unaware errors as a function of time elapsed, thanks to the involvement first of interoceptive or proprioceptive processes (left insula), later leading to the detection of a breach in the prepotent response mode (right OFC)
    corecore