34 research outputs found

    Local delivery of beta interferon using an adeno-associated virus type 5 effectively inhibits adjuvant arthritis in rats

    Get PDF
    Beta interferon (IFN-β) is a cytokine with potent immunomodulatory properties and has been described as a promising therapeutic molecule for the treatment of rheumatoid arthritis (RA). IFN-β was previously overexpressed intra-articularly using an adenoviral vector in rats with adjuvant arthritis (AA) as a model of RA. This effect was powerful, albeit transient due to the vector chosen. Therefore, in the context of pre-clinical development, a delivery vector optimized for intra-articular gene transfer, recombinant adeno-associated virus type 5 (rAAV5), was selected. To exert an optimal effect, protein production should parallel the course of the disease. For this reason, the gene for IFN-β was placed under the control of an inflammation-responsive [nuclear factor (NF)-κB] promoter. After intra-articular injection of the rAAV5 constructs in rats with AA, local transcription of the transgene and production of the IFN-β protein was found, leading to a pronounced and sustained effect on paw swelling when the expression was under the control of the NF-κB-responsive promoter. Additionally, a significant beneficial effect was observed on proteoglycan depletion and erosions. Thus, intra-articular overexpression of IFN-β using a rAAV5 vector exhibits potential as an innovative therapy for the treatment of RA

    Right drug, right patient, right time: aspiration or future promise for biologics in rheumatoid arthritis?

    Get PDF
    Individualising biologic disease-modifying anti-rheumatic drugs (bDMARDs) to maximise outcomes and deliver safe and cost-effective care is a key goal in the management of rheumatoid arthritis (RA). Investigation to identify predictive tools of bDMARD response is a highly active and prolific area of research. In addition to clinical phenotyping, cellular and molecular characterisation of synovial tissue and blood in patients with RA, using different technologies, can facilitate predictive testing. This narrative review will summarise the literature for the available bDMARD classes and focus on where progress has been made. We will also look ahead and consider the increasing use of ‘omics’ technologies, the potential they hold as well as the challenges, and what is needed in the future to fully realise our ambition of personalised bDMARD treatment

    Eine Xylenolmethode zum qualitativen Nitratnachweis

    No full text
    corecore