715 research outputs found

    Identification of WISE J000100.45+065259.6 as an M8.5+T5 Spectral Binary Candidate

    Full text link
    [not part of RNAAS note] We report the discovery of WISE J000100.45+065259.6 as a very low mass star/brown dwarf spectral binary candidate, on the basis of low resolution near-infrared spectroscopy obtained with IRTF/SpeX. Decomposition of the spectrum indicates component types of M8.5+T5 with a predicted ΔJ\Delta{J} = 3.5. As the majority of confirmed spectral binary candidates to date are very closely-separated systems (ρ\rho \lesssim 3 AU; PP \lesssim 15~yr), this source may provide mass measurements across the hydrogen burning limit within the decade.Comment: 3 pages, 1 figure, accepted to Research Notes of the AA

    Single and Composite Hot Subdwarf Stars in the Light of 2MASS Photometry

    Full text link
    Utilizing the Two Micron All Sky Survey (2MASS) Second Incremental Data Release Catalog, we have retrieved near-IR magnitudes for several hundred hot subdwarfs (sdO and sdB stars) drawn from the "Catalogue of Spectroscopically Identified Hot Subdwarfs" (Kilkenny, Heber, & Drilling 1988, 1992). This sample size greatly exceeds that of previous studies of hot subdwarfs. Examining 2MASS photometry alone or in combination with visual photometry (Johnson BV or Stromgren uvby) available in the literature, we show that it is possible to identify hot subdwarf stars that exhibit atypically red IR colors that can be attributed to the presence of an unresolved late type companion. Utilizing this large sample, we attempt for the first time to define an approximately volume limited sample of hot subdwarfs. We discuss the considerations, biases, and difficulties in defining such a sample. We find that, of the hot subdwarfs in Kilkenny et al., about 40% in a magnitude limited sample have colors that are consistent with the presence of an unresolved late type companion. Binary stars are over-represented in a magnitude limited sample. In an approximately volume limited sample the fraction of composite-color binaries is about 30%.Comment: to appear in Sept 2003 AJ, 41 pages total, 12 figures, 2 tables are truncated (full tables to appear in electronic journal or available by request

    Assessing the C/O Ratio Formation Diagnostic: A Potential Trend with Companion Mass

    Full text link
    The carbon-to-oxygen (C/O) ratio in an exoplanet atmosphere has been suggested as a potential diagnostic of planet formation. Now that a number of exoplanets have measured C/O ratios, it is possible to examine this diagnostic at a population level. Here, we present an analysis of currently measured C/O ratios of directly imaged and transit/eclipse planets. First, we derive atmospheric parameters for the substellar companion HD 284149 b using data that were taken with the OSIRIS integral field spectrograph at the W.M. Keck Observatory and report two non-detections from our ongoing imaging spectroscopy survey of exoplanetary atmospheres with Keck/OSIRIS. We find an effective temperature of Teff=2502T_\mathrm{eff} = 2502~K, with a range of 2291--2624~K, logg=4.52\log g=4.52, with a range of 4.38--4.91, and [M/H] = 0.37, with a range of 0.10--0.55. These values are in agreement with previous studies done by Bonavita et al. (2014, 2017). We derive a C/O of 0.5890.295+0.148^{+0.148}_{-0.295} for HD 284149 b. We then add this measurement to the growing list of C/O ratios for directly imaged planets from the literature, and compare them with those available from a sample of transit/eclipse planets. There is a trend in C/O ratio with companion mass (MJup_{\mathrm{Jup}}), with a break seen around 4 MJup_{\mathrm{Jup}}. We run a Kolmogorov-Smirnov and an Anderson-Darling test on planets above and below this mass boundary, and find that they are two distinct populations. This could be additional evidence of two distinct populations possibly having two different formation pathways, with companion mass as a primary indicator of most likely formation scenario.Comment: 20 pages, 12 figure

    The Perkins INfrared Exosatellite Survey (PINES) II. Transit Candidates and Implications for Planet Occurrence around L and T Dwarfs

    Get PDF
    We describe a new transit detection algorithm designed to detect single transit events in discontinuous Perkins INfrared Exosatellite Survey (PINES) observations of L and T dwarfs. We use this algorithm to search for transits in 131 PINES light curves and identify two transit candidates: 2MASS J18212815+1414010 (2MASS J1821+1414) and 2MASS J08350622+1953050 (2MASS J0835+1953). We disfavor 2MASS J1821+1414 as a genuine transit candidate due to the known variability properties of the source. We cannot rule out the planetary nature of 2MASS J0835+1953's candidate event and perform follow-up observations in an attempt to recover a second transit. A repeat event has yet to be observed, but these observations suggest that target variability is an unlikely cause of the candidate transit. We perform a Markov chain Monte Carlo simulation of the light curve and estimate a planet radius ranging from 4.21.6+3.5R4.2^{+3.5}_{-1.6}R_\oplus to 5.82.1+4.8R5.8^{+4.8}_{-2.1}R_\oplus, depending on the host's age. Finally, we perform an injection and recovery simulation on our light curve sample. We inject planets into our data using measured M dwarf planet occurrence rates and attempt to recover them using our transit search algorithm. Our detection rates suggest that, assuming M dwarf planet occurrence rates, we should have roughly a 1%\% chance of detecting a candidate that could cause the transit depth we observe for 2MASS J0835+1953. If 2MASS J0835+1953 b is confirmed, it would suggest an enhancement in the occurrence of short-period planets around L and T dwarfs in comparison to M dwarfs, which would challenge predictions from planet formation models.Comment: 23 pages, 15 figures, accepted to A
    corecore