1,477 research outputs found

    Ultrafast Coherent Spectroscopy of the Fermi Edge Singularity

    Get PDF
    In this work we present a theoretical description of the transient response of the Fermi Edge Singularity (FES). We study the linear and the nonlinear response of an n-doped QW to laser pulses in the Coherent Control (CC) and Four Wave Mixing (FWM) Configurations. By means of a bosonization formalism we calculate the FWM signal emitted by the sample when it is excited by pulses spectrally peaked around the FES and we show that the long time behavior of the nonlinear signal is very similar to the linear case.Comment: Conference paper (13 EP2DS

    Fermionic Atoms in Optical Superlattices

    Full text link
    Fermionic atoms in an optical superlattice can realize a very peculiar Anderson lattice model in which impurities interact with each other through a discretized set of delocalized levels. We investigate the interplay between Kondo effect and magnetism under these finite-size features. We find that Kondo effect can dominate over magnetism depending on the parity of the number of particles per discretized set. We show how Kondo-induced resonances of measurable size can be observed through the atomic interference pattern

    Exciton Beats in GaAs Quantum Wells: Bosonic Representation and Collective Effects

    Get PDF
    We discuss light-heavy hole beats observed in transient optical experiments in GaAs quantum wells in terms of a free-boson coherent state model. This approach is compared with descriptions based on few-level representations. Results lead to an interpretation of the beats as due to classical electromagnetic interference. The boson picture correctly describes photon excitation of extended states and accounts for experiments involving coherent control of the exciton density and Rayleigh scattering beating.Comment: 4 pages, no figures. Accepted for publication in Solid State Communication

    Spontaneous patterns in coherently driven polariton microcavities

    Full text link
    We consider a polariton microcavity resonantly driven by two external lasers which simultaneously pump both lower and upper polariton branches at normal incidence. In this setup, we study the occurrence of instabilities of the pump-only solutions towards the spontaneous formation of patterns. Their appearance is a consequence of the spontaneous symmetry breaking of translational and rotational invariance due to interaction induced parametric scattering. We observe the evolution between diverse patterns which can be classified as single-pump, where parametric scattering occurs at the same energy as one of the pumps, and as two-pump, where scattering occurs at a different energy. For two-pump instabilities, stripe and chequerboard patterns become the dominant steady-state solutions because cubic parametric scattering processes are forbidden. This contrasts with the single-pump case, where hexagonal patterns are the most common arrangements. We study the possibility of controlling the evolution between different patterns. Our results are obtained within a linear stability analysis and are confirmed by finite size full numerical calculations.Comment: 15 pages, 9 figure

    Quantitative Description of Strong-Coupling of Quantum Dots in Microcavities

    Full text link
    We have recently developed a self-consistent theory of Strong-Coupling in the presence of an incoherent pumping [arXiv:0807.3194] and shown how it could reproduce quantitatively the experimental data [PRL 101, 083601 (2008)]. Here, we summarize our main results, provide the detailed analysis of the fitting of the experiment and discuss how the field should now evolve beyond merely qualitative expectations, that could well be erroneous even when they seem to be firmly established.Comment: Submitted to the AIP Conference Proceedings Series for the ICPS 2008 (Rio de Janeiro). 2 pages, reduced-quality figur

    The electro production of d* dibaryon

    Full text link
    dd^* dibaryon study is a critical test of hadron interaction models. The electro production cross sections of ededed\to ed^* have been calculated based on the meson exchange current model and the cross section around 30 degree of 1 GeV electron in the laboratory frame is about 10 nb. The implication of this result for the dd^* dibaryon search has been discussed.Comment: 12 pages, 12 figures, Late

    Restrictions on the coherence of the ultrafast optical emission from an electron-hole pairs condensate

    Full text link
    We report on the transfer of coherence from a quantum-well electron-hole condensate to the light it emits. As a function of density, the coherence of the electron-hole pair system evolves from being full for the low density Bose-Einstein condensate to a chaotic behavior for a high density BCS-like state. This degree of coherence is transfered to the light emitted in a damped oscillatory way in the ultrafast regime. Additionally, the photon field exhibits squeezing properties during the transfer time. We analyze the effect of light frequency and separation between electron and hole layers on the optical coherence. Our results suggest new type of ultrafast experiments for detecting electron-hole pair condensation.Comment: 4 pages,3 figures, to be published in Physical Review Letters. Minor change
    corecore