1,518 research outputs found
Rheological properties vs Local Dynamics in model disordered materials at Low Temperature
We study the rheological response at low temperature of a sheared model
disordered material as a function of the bond rigidity. We find that the flow
curves follow a Herschel-Bulkley law, whatever is the bond rigidity, with an
exponent close to 0.5. Interestingly, the apparent viscosity can be related to
a single relevant time scale , suggesting a strong connection between
the local dynamics and the global mechanical behaviour. We propose a model
based on the competition between the nucleation and the avalanche-like
propagation of spatial strain heterogeneities. This model can explain the
Herschel-Bulkley exponent on the basis of the size dependence of the
heterogeneities on the shear rate.Comment: 9 pages, 7 figure
Interface of the transport systems research vehicle monochrome display system to the digital autonomous terminal access communication data bus
An upgrade of the transport systems research vehicle (TSRV) experimental flight system retained the original monochrome display system. The original host computer was replaced with a Norden 11/70, a new digital autonomous terminal access communication (DATAC) data bus was installed for data transfer between display system and host, while a new data interface method was required. The new display data interface uses four split phase bipolar (SPBP) serial busses. The DATAC bus uses a shared interface ram (SIR) for intermediate storage of its data transfer. A display interface unit (DIU) was designed and configured to read from and write to the SIR to properly convert the data from parallel to SPBP serial and vice versa. It is found that separation of data for use by each SPBP bus and synchronization of data tranfer throughout the entire experimental flight system are major problems which require solution in DIU design. The techniques used to accomplish these new data interface requirements are described
Parton Ladder Splitting and the Rapidity Dependence of Transverse Momentum Spectra in Deuteron-Gold Collisions at RHIC
We present a phenomenological approach (EPOS), based on the parton model, but
going much beyond, and try to understand proton-proton and deuteron-gold
collisions, in particular the transverse momentum results from all the four
RHIC experiments. It turns out that elastic and inelastic parton ladder
splitting is the key issue. Elastic splitting is in fact related to screening
and saturation, but much more important is the inelastic contribution, being
crucial to understand the data. We investigate in detail the rapidity
dependence of nuclear effects, which is actually relatively weak in the model,
in perfect agreement with the data, if the latter ones are interpreted
correctly.Comment: 39 pages, 28 figure
The non dissipative damping of the Rabi oscillations as a "which-path" information
Rabi oscillations may be viewed as an interference phenomenon due to a
coherent superposition of different quantum paths, like in the Young's two-slit
experiment. The inclusion of the atomic external variables causes a non
dissipative damping of the Rabi oscillations. More generally, the atomic
translational dynamics induces damping in the correlation functions which
describe non classical behaviors of the field and internal atomic variables,
leading to the separability of these two subsystems. We discuss on the
possibility of interpreting this intrinsic decoherence as a "which-way"
information effect and we apply to this case a quantitative analysis of the
complementarity relation as introduced by Englert [Phys. Rev. Lett.
\textbf{77}, 2154 (1996)].Comment: 5 pages, 2 figure
Particle displacements in the elastic deformation of amorphous materials: local fluctuations vs. non-affine field
We study the local disorder in the deformation of amorphous materials by
decomposing the particle displacements into a continuous, inhomogeneous field
and the corresponding fluctuations. We compare these fields to the commonly
used non-affine displacements in an elastically deformed 2D Lennard-Jones
glass. Unlike the non-affine field, the fluctuations are very localized, and
exhibit a much smaller (and system size independent) correlation length, on the
order of a particle diameter, supporting the applicability of the notion of
local "defects" to such materials. We propose a scalar "noise" field to
characterize the fluctuations, as an additional field for extended continuum
models, e.g., to describe the localized irreversible events observed during
plastic deformation.Comment: Minor corrections to match the published versio
Versatile surrogate models for IC buffers
In previous papers [1,2] the authors have investigated the use of Volterra series in the identification of IC buffer macro-models. While the approach benefited from some of the inherent qualities of Volterra series it preserved the two-state paradigm of earlier methods (see [3] and its references) and was thus limited in its versatility. In the current paper the authors tackle the challenge of going beyond an application or device-oriented approach and build versatile surrogate models that mimic the behavior of IC buffers over a wide frequency band and for a variety of loads thus achieving an unprecedented degree of generality. This requires the use of a more general system identification paradig
Controllability indices for structured systems
AbstractA new methodology is proposed for the characterization of the controllability indices of linear multivariable systems. Related to the state space representation, a new symbolism dealing only with numbers associated with the position of nonnull terms of matrices is proposed. This symbolism, associated with the graphical digraph representation model, allows one to highlight, from a structural point of view, a list of dimensions of controllable subspaces corresponding one to one with the list of controllability indices
- …