349 research outputs found

    Antibiotic therapy in acute diarrhea associated with Shigella: what is the best option?

    Get PDF
    Universidade Federal de São Paulo (UNIFESP)Centro Universitário Fundação e Instituto de Educação de Osasco Departamento de Ciências da Saúde Instituto de Pesquisa UnolabUNIFESP Departamento de PediatriaUNIFESP, Depto. de PediatriaSciEL

    Quantum phase transitions in photonic cavities with two-level systems

    Full text link
    Systems of coupled photonic cavities have been predicted to exhibit quantum phase transitions by analogy with the Hubbard model. To this end, we have studied topologies of few (up to six) photonic cavities each containing a single two-level system. Quantum phase space diagrams are produced for these systems, and compared to mean-field results. We also consider finite effective temperature, and compare this to the notion of disorder. We find the extent of the Mott lobes shrink analogously to the conventional Bose-Hubbard model.Comment: 11 pages, 11 figures, updated typo

    Kinetic Monte Carlo Simulations of Crystal Growth in Ferroelectric Alloys

    Full text link
    The growth rates and chemical ordering of ferroelectric alloys are studied with kinetic Monte Carlo (KMC) simulations using an electrostatic model with long-range Coulomb interactions, as a function of temperature, chemical composition, and substrate orientation. Crystal growth is characterized by thermodynamic processes involving adsorption and evaporation, with solid-on-solid restrictions and excluding diffusion. A KMC algorithm is formulated to simulate this model efficiently in the presence of long-range interactions. Simulations were carried out on Ba(Mg_{1/3}Nb_{2/3})O_3 (BMN) type materials. Compared to the simple rocksalt ordered structures, ordered BMN grows only at very low temperatures and only under finely tuned conditions. For materials with tetravalent compositions, such as (1-x)Ba(Mg_{1/3}Nb_{2/3})O_3 + xBaZrO_3 (BMN-BZ), the model does not incorporate tetravalent ions at low-temperature, exhibiting a phase-separated ground state instead. At higher temperatures, tetravalent ions can be incorporated, but the resulting crystals show no chemical ordering in the absence of diffusive mechanisms.Comment: 13 pages, 16 postscript figures, submitted to Physics Review B Journa

    Rashba spin-orbit coupling and spin relaxation in silicon quantum wells

    Full text link
    Silicon is a leading candidate material for spin-based devices, and two-dimensional electron gases (2DEGs) formed in silicon heterostructures have been proposed for both spin transport and quantum dot quantum computing applications. The key parameter for these applications is the spin relaxation time. Here we apply the theory of D'yakonov and Perel' (DP) to calculate the electron spin resonance linewidth of a silicon 2DEG due to structural inversion asymmetry for arbitrary static magnetic field direction at low temperatures. We estimate the Rashba spin-orbit coupling coefficient in silicon quantum wells and find the T1T_{1} and T2T_{2} times of the spins from this mechanism as a function of momentum scattering time, magnetic field, and device-specific parameters. We obtain agreement with existing data for the angular dependence of the relaxation times and show that the magnitudes are consistent with the DP mechanism. We suggest how to increase the relaxation times by appropriate device design.Comment: Extended derivations and info, fixed typos and refs, updated figs and data. Worth a re-downloa

    Prevalence of voluntary dehydration according to urine osmolarity in elementary school students in the metropolitan region of São Paulo, Brazil

    Get PDF
    OBJECTIVES: To evaluate the prevalence of voluntary dehydration based on urine osmolarity in elementary school students from two public educational institutions in the metropolitan region of SaËœo Paulo and evaluate whether there is a relationship between voluntary dehydration and nutritional status or socioeconomic status. METHODS: Analytical cross-sectional study with students from two public schools in the city of Osasco. The determination of urine osmolarity was performed using the freezing method of the Advanceds Osmometer Model 3W2. Urine osmolarity greater than 800 mOsm/kg H2O was considered voluntary dehydration. During data collection, the weights and heights of the students, environmental temperatures and air humidity levels were obtained. RESULTS: A total of 475 students aged six to 12 years were evaluated, of whom 188 were male. Voluntary dehydration occurred in 63.2% of the students and was more frequent in males than in females. The prevalence of voluntary dehydration was more frequent in males aged six to nine years than in females. However, no statistically significant difference was observed between males and females aged 10 to 12 years. No association was found between voluntary dehydration and nutritional status or socioeconomic status. CONCLUSION: The prevalence of voluntary dehydration was high in elementary school students and was more frequent in males. No association was found between voluntary dehydration and nutritional or socioeconomic status

    Valley Splitting Theory of SiGe/Si/SiGe Quantum Wells

    Full text link
    We present an effective mass theory for SiGe/Si/SiGe quantum wells, with an emphasis on calculating the valley splitting. The theory introduces a valley coupling parameter, vvv_v, which encapsulates the physics of the quantum well interface. The new effective mass parameter is computed by means of a tight binding theory. The resulting formalism provides rather simple analytical results for several geometries of interest, including a finite square well, a quantum well in an electric field, and a modulation doped two-dimensional electron gas. Of particular importance is the problem of a quantum well in a magnetic field, grown on a miscut substrate. The latter may pose a numerical challenge for atomistic techniques like tight-binding, because of its two-dimensional nature. In the effective mass theory, however, the results are straightforward and analytical. We compare our effective mass results with those of the tight binding theory, obtaining excellent agreement.Comment: 13 pages, 7 figures. Version submitted to PR

    Assessment of the Robustness of a Fixtureless Inspection Method for Nonrigid Parts Based on a Verification and Validation Approach

    Get PDF
    The increasing practical use of computer-aided inspection (CAI) methods requires assessment of their robustness in different contexts. This can be done by quantitatively comparing estimated CAI results with actual measurements. The objective is comparing the magnitude and dimensions of defects as estimated by CAI with those of the nominal defects. This assessment is referred to as setting up a validation metric. In this work, a new validation metric is proposed in the case of a fixtureless inspection method for nonrigid parts. It is based on using a nonparametric statistical hypothesis test, namely the Kolmogorov–Smirnov (K–S) test. This metric is applied to an automatic fixtureless CAI method for nonrigid parts developed by our team. This fixtureless CAI method is based on calculating and filtering sample points that are used in a finite element nonrigid registration (FENR). Robustness of our CAI method is validated for the assessment of maximum amplitude, area, and distance distribution of defects. Typical parts from the aerospace industry are used for this validation and various levels of synthetic measurement noise are added to the scanned point cloud of these parts to assess the effect of noise on inspection results
    • …
    corecore