8,672 research outputs found

    Complexity transitions in global algorithms for sparse linear systems over finite fields

    Full text link
    We study the computational complexity of a very basic problem, namely that of finding solutions to a very large set of random linear equations in a finite Galois Field modulo q. Using tools from statistical mechanics we are able to identify phase transitions in the structure of the solution space and to connect them to changes in performance of a global algorithm, namely Gaussian elimination. Crossing phase boundaries produces a dramatic increase in memory and CPU requirements necessary to the algorithms. In turn, this causes the saturation of the upper bounds for the running time. We illustrate the results on the specific problem of integer factorization, which is of central interest for deciphering messages encrypted with the RSA cryptosystem.Comment: 23 pages, 8 figure

    Two-color ionization of hydrogen by short intense pulses

    Full text link
    Photoelectron energy spectra resulting by the interaction of hydrogen with two short pulses having carrier frequencies, respectively, in the range of the infrared and XUV regions have been calculated. The effects of the pulse duration and timing of the X-ray pulse on the photoelectron energy spectra are discussed. Analysis of the spectra obtained for very long pulses show that certain features may be explained in terms of quantum interferences in the time domain. It is found that, depending on the duration of the X-ray pulse, ripples in the energy spectra separated by the infrared photon energy may appear. Moreover, the temporal shape of the low frequency radiation field may be inferred by the breadth of the photoelectron energy spectra.Comment: 12 pages, 8 figure

    Landslide Risk: Economic Valuation in the North-Eastern Zone of Medellin City

    Get PDF
    Natural disasters of a geodynamic nature can cause enormous economic and human losses. The economic costs of a landslide disaster include relocation of communities and physical repair of urban infrastructure. However, when performing a quantitative risk analysis, generally, the indirect economic consequences of such an event are not taken into account. A probabilistic approach methodology that considers several scenarios of hazard and vulnerability to measure the magnitude of the landslide and to quantify the economic costs is proposed. With this approach, it is possible to carry out a quantitative evaluation of the risk by landslides, allowing the calculation of the economic losses before a potential disaster in an objective, standardized and reproducible way, taking into account the uncertainty of the building costs in the study zone. The possibility of comparing different scenarios facilitates the urban planning process, the optimization of interventions to reduce risk to acceptable levels and an assessment of economic losses according to the magnitude of the damage. For the development and explanation of the proposed methodology, a simple case study is presented, located in north-eastern zone of the city of Medellín. This area has particular geomorphological characteristics, and it is also characterized by the presence of several buildings in bad structural conditions. The proposed methodology permits to obtain an estimative of the probable economic losses by earthquake-induced landslides, taking into account the uncertainty of the building costs in the study zone. The obtained estimative shows that the structural intervention of the buildings produces a reduction the order of 21 % in the total landslide risk. Š Published under licence by IOP Publishing Ltd

    Nonresonant control of multimode molecular wave packets at room temperature

    Get PDF
    Includes bibliographical references (pages 033001-4).We demonstrate the creation and measurement of shaped multimode vibrational wave packets with overtone and combination mode excitation in CCl4. Excitation of wave packets through nonresonant impulsive stimulated Raman scattering allows for coherent control of molecular vibrations without passing through an electronic resonance. This technique is therefore very general and can be implemented in a large class of molecular gases and liquids at STP, which were previously inaccessible because their resonances are in the VUV

    The DLV System for Knowledge Representation and Reasoning

    Full text link
    This paper presents the DLV system, which is widely considered the state-of-the-art implementation of disjunctive logic programming, and addresses several aspects. As for problem solving, we provide a formal definition of its kernel language, function-free disjunctive logic programs (also known as disjunctive datalog), extended by weak constraints, which are a powerful tool to express optimization problems. We then illustrate the usage of DLV as a tool for knowledge representation and reasoning, describing a new declarative programming methodology which allows one to encode complex problems (up to Δ3P\Delta^P_3-complete problems) in a declarative fashion. On the foundational side, we provide a detailed analysis of the computational complexity of the language of DLV, and by deriving new complexity results we chart a complete picture of the complexity of this language and important fragments thereof. Furthermore, we illustrate the general architecture of the DLV system which has been influenced by these results. As for applications, we overview application front-ends which have been developed on top of DLV to solve specific knowledge representation tasks, and we briefly describe the main international projects investigating the potential of the system for industrial exploitation. Finally, we report about thorough experimentation and benchmarking, which has been carried out to assess the efficiency of the system. The experimental results confirm the solidity of DLV and highlight its potential for emerging application areas like knowledge management and information integration.Comment: 56 pages, 9 figures, 6 table

    Shwachman-Kulczycki score still useful to monitor cystic fibrosis severity

    Get PDF
    INTRODUCTION: The Shwachman-Kulczycki score was the first scoring system used in cystic fibrosis to assess disease severity. Despite its subjectivity, it is still widely used. OBJECTIVE: To study correlations among forced expiratory volume in one second (FEV1), chest radiography, chest computed tomography, 6-minute walk test, and Shwachman-Kulczycki score in patients with cystic fibrosis and to test whether the Shwachman-Kulczycki score is still useful in monitoring the severity of the disease. METHODS: A cross-sectional prospective study was performed to analyze the correlations (Spearman). Patients with clinically stable cystic fibrosis, aged 3-21 years, were included. RESULTS: 43 patients, 19F/24M, mean age 10.5 + 4.7 years, with a median Shwachman-Kulczycki score of 70 were studied. The median Brasfield and Bhalla scores were 17 and 10, respectively. The mean Z score for the 6-minute walk test was -1.1 + 1.106 and the mean FEV1 was 59 + 26 (as percentage of predicted values). The following significant correlations versus the Shwachman-Kulczycki score were found: FEV1 (r = 0.76), 6-minute walk test (r = 0.71), chest radiography (r = 0.71) and chest computed tomography (r = -0.78). When patients were divided according to FEV1, a statistically significantly correlation with the Shwachman-Kulczycki score was found only in patients with FEV1 <70% (r = 0.67). CONCLUSIONS: The Shwachman-Kulczycki score remains an useful tool for monitoring the severity of cystic fibrosis, adequately reflecting the functional impairment and chest radiography and tomography changes, especially in patients with greater impairment of lung function. When assessing patients with mild lung disease its limitations should be considered and its usefulness in such patients should be evaluated in larger populations
    • …
    corecore