37,255 research outputs found

    On a generalization of Jacobi's elliptic functions and the Double Sine-Gordon kink chain

    Full text link
    A generalization of Jacobi's elliptic functions is introduced as inversions of hyperelliptic integrals. We discuss the special properties of these functions, present addition theorems and give a list of indefinite integrals. As a physical application we show that periodic kink solutions (kink chains) of the double sine-Gordon model can be described in a canonical form in terms of generalized Jacobi functions.Comment: 18 pages, 9 figures, 3 table

    Exotic magnetism on the quasi-FCC lattices of the d3d^3 double perovskites La2_2NaB′'O6_6 (B′' == Ru, Os)

    Full text link
    We find evidence for long-range and short-range (ζ\zeta == 70 \AA~at 4 K) incommensurate magnetic order on the quasi-face-centered-cubic (FCC) lattices of the monoclinic double perovskites La2_2NaRuO6_6 and La2_2NaOsO6_6 respectively. Incommensurate magnetic order on the FCC lattice has not been predicted by mean field theory, but may arise via a delicate balance of inequivalent nearest neighbour and next nearest neighbour exchange interactions. In the Ru system with long-range order, inelastic neutron scattering also reveals a spin gap Δ\Delta ∼\sim 2.75 meV. Magnetic anisotropy is generally minimized in the more familiar octahedrally-coordinated 3d33d^3 systems, so the large gap observed for La2_2NaRuO6_6 may result from the significantly enhanced value of spin-orbit coupling in this 4d34d^3 material.Comment: 5 pages, 4 figure

    Time dependent transformations in deformation quantization

    Full text link
    We study the action of time dependent canonical and coordinate transformations in phase space quantum mechanics. We extend the covariant formulation of the theory by providing a formalism that is fully invariant under both standard and time dependent coordinate transformations. This result considerably enlarges the set of possible phase space representations of quantum mechanics and makes it possible to construct a causal representation for the distributional sector of Wigner quantum mechanics.Comment: 16 pages, to appear in the J. Math. Phy

    Rodrigues Formula for the Nonsymmetric Multivariable Laguerre Polynomial

    Full text link
    Extending a method developed by Takamura and Takano, we present the Rodrigues formula for the nonsymmetric multivariable Laguerre polynomials which form the orthogonal basis for the BNB_{N}-type Calogero model with distinguishable particles. Our construction makes it possible for the first time to algebraically generate all the nonsymmetric multivariable Laguerre polynomials with different parities for each variable.Comment: 6 pages, LaTe

    Complete Set of Polarization Transfer Observables for the 12C(p,n)^{12}{\rm C}(p,n) Reaction at 296 MeV and 0∘^{\circ}

    Full text link
    A complete set of polarization transfer observables has been measured for the 12C(p,n)^{12}{\rm C}(p,n) reaction at Tp=296MeVT_p=296 {\rm MeV} and θlab=0∘\theta_{\rm lab}=0^{\circ}. The total spin transfer Σ(0∘)\Sigma(0^{\circ}) and the observable f1f_1 deduced from the measured polarization transfer observables indicate that the spin--dipole resonance at Ex≃7MeVE_x \simeq 7 {\rm MeV} has greater 2−2^- strength than 1−1^- strength, which is consistent with recent experimental and theoretical studies. The results also indicate a predominance of the spin-flip and unnatural-parity transition strength in the continuum. The exchange tensor interaction at a large momentum transfer of Q≃3.6fm−1Q \simeq 3.6 {\rm fm}^{-1} is discussed.Comment: 4 pages, 4 figure

    Accurate black hole evolutions by fourth-order numerical relativity

    Full text link
    We present techniques for successfully performing numerical relativity simulations of binary black holes with fourth-order accuracy. Our simulations are based on a new coding framework which currently supports higher order finite differencing for the BSSN formulation of Einstein's equations, but which is designed to be readily applicable to a broad class of formulations. We apply our techniques to a standard set of numerical relativity test problems, demonstrating the fourth-order accuracy of the solutions. Finally we apply our approach to binary black hole head-on collisions, calculating the waveforms of gravitational radiation generated and demonstrating significant improvements in waveform accuracy over second-order methods with typically achievable numerical resolution.Comment: 17 pages, 25 figure

    Generalized Weyl-Wigner map and Vey quantum mechanics

    Get PDF
    The Weyl-Wigner map yields the entire structure of Moyal quantum mechanics directly from the standard operator formulation. The covariant generalization of Moyal theory, also known as Vey quantum mechanics, was presented in the literature many years ago. However, a derivation of the formalism directly from standard operator quantum mechanics, clarifying the relation between the two formulations is still missing. In this paper we present a covariant generalization of the Weyl order prescription and of the Weyl-Wigner map and use them to derive Vey quantum mechanics directly from the standard operator formulation. The procedure displays some interesting features: it yields all the key ingredients and provides a more straightforward interpretation of the Vey theory including a direct implementation of unitary operator transformations as phase space coordinate transformations in the Vey idiom. These features are illustrated through a simple example.Comment: 15 pages, LaTe

    Exact solutions for a class of integrable Henon-Heiles-type systems

    Full text link
    We study the exact solutions of a class of integrable Henon-Heiles-type systems (according to the analysis of Bountis et al. (1982)). These solutions are expressed in terms of two-dimensional Kleinian functions. Special periodic solutions are expressed in terms of the well-known Weierstrass function. We extend some of our results to a generalized Henon-Heiles-type system with n+1 degrees of freedom.Comment: RevTeX4-1, 13 pages, Submitted to J. Math. Phy

    Antiferromagnetic Order in MnO Spherical Nanoparticles

    Get PDF
    We have performed unpolarized and polarized neutron diffraction experiments on monodisperse 8 nm and 13 nm antiferromagnetic MnO nanoparticles. For the 8 nm sample, the antiferromagnetic transition temperature TNT_N (114 K) is suppressed compared to the bulk material (119 K) while for the 13 nm sample TNT_N (120 K) is comparable to the bulk. The neutron diffraction data of the nanoparticles is well described using the bulk MnO magnetic structure but with a substantially reduced average magnetic moment of 4.2±\pm0.3 μB\mu_B/Mn for the 8 nm sample and 3.9±\pm0.2 μB\mu_B/Mn for the 13 nm sample. An analysis of the polarized neutron data on both samples shows that in an individual MnO nanoparticle about 80% of Mn ions order. These results can be explained by a structure in which the monodisperse nanoparticles studied here have a core that behaves similar to the bulk with a surface layer which does not contribute significantly to the magnetic order.Comment: 7 pages, 5 figure
    • …
    corecore