1,467 research outputs found

    Southern hemispheric halon trends and global halon emissions, 1978–2011

    Get PDF
    The atmospheric records of four halons, H-1211 (CBrClF2), H-1301 (CBrF3), H-2402 (CBrF2CBrF2) and H-1202 (CBr2F2), measured from air collected at Cape Grim, Tasmania, between 1978 and 2011, are reported. Mixing ratios of H-1211, H-2402 and H-1202 began to decline in the early to mid-2000s, but those of H-1301 continue to increase up to mid-2011. These trends are compared to those reported by NOAA (National Oceanic and Atmospheric Administration) and AGAGE (Advanced Global Atmospheric Experiment). The observations suggest that the contribution of the halons to total tropospheric bromine at Cape Grim has begun to decline from a peak in 2008 of about 8.1 ppt. An extrapolation of halon mixing ratios to 2060, based on reported banks and predicted release factors, shows this decline becoming more rapid in the coming decades, with a contribution to total tropospheric bromine of about 3 ppt in 2060. Top-down global annual emissions of the halons were derived using a two-dimensional atmospheric model. The emissions of all four have decreased since peaking in the late 1980s–mid-1990s, but this decline has slowed recently, particularly for H-1301 and H-2402 which have shown no decrease in emissions over the past five years. The UEA (University of East Anglia) top-down model-derived emissions are compared to those reported using a top-down approach by NOAA and AGAGE and the bottom-up estimates of HTOC (Halons Technical Options Committee). The implications of an alternative set of steady-state atmospheric lifetimes are discussed. Using a lifetime of 14 yr or less for H-1211 to calculate top-down emissions estimates would lead to small, or even negative, estimated banks given reported production data. Finally emissions of H-1202, a product of over-bromination during the production process of H-1211, have continued despite reported production of H-1211 ceasing in 2010. This raises questions as to the source of these H-1202 emissions

    Neutrophil gelatinase-associated lipocalin: its response to hypoxia and association with acute mountain sickness.

    Get PDF
    Acute Mountain Sickness (AMS) is a common clinical challenge at high altitude (HA). A point-of-care biochemical marker for AMS could have widespread utility. Neutrophil gelatinase-associated lipocalin (NGAL) rises in response to renal injury, inflammation and oxidative stress. We investigated whether NGAL rises with HA and if this rise was related to AMS, hypoxia or exercise. NGAL was assayed in a cohort (n = 22) undertaking 6 hours exercise at near sea-level (SL); a cohort (n = 14) during 3 hours of normobaric hypoxia (FiO2 11.6%) and on two trekking expeditions (n = 52) to over 5000 m. NGAL did not change with exercise at SL or following normobaric hypoxia. During the trekking expeditions NGAL levels (ng/ml, mean ± sd, range) rose significantly (P < 0.001) from 68 ± 14 (60-102) at 1300 m to 183 ± 107 (65-519); 143 ± 66 (60-315) and 150 ± 71 (60-357) at 3400 m, 4270 m and 5150 m respectively. At 5150 m there was a significant difference in NGAL between those with severe AMS (n = 7), mild AMS (n = 16) or no AMS (n = 23): 201 ± 34 versus 171 ± 19 versus 124 ± 12 respectively (P = 0.009 for severe versus no AMS; P = 0.026 for mild versus no AMS). In summary, NGAL rises in response to prolonged hypobaric hypoxia and demonstrates a relationship to the presence and severity of AMS

    PSS32 Impact of dry eye on everyday life (Ideel) - Symptom bother: Estimating cut-off scores for dry eye severity groups

    Get PDF
    The aims of the study were to estimate score ranges associated with dry eye severity based on the Impact of Dry Eye on Everyday Life (IDEEL) Symptom Bother (SB) domain, and to evaluate the overall performance of the SB domain

    Human AlkB Homolog ABH8 Is a tRNA Methyltransferase Required for Wobble Uridine Modification and DNA Damage Survival

    Get PDF
    tRNA nucleosides are extensively modified to ensure their proper function in translation. However, many of the enzymes responsible for tRNA modifications in mammals await identification. Here, we show that human AlkB homolog 8 (ABH8) catalyzes tRNA methylation to generate 5-methylcarboxymethyl uridine (mcm[superscript 5]U) at the wobble position of certain tRNAs, a critical anticodon loop modification linked to DNA damage survival. We find that ABH8 interacts specifically with tRNAs containing mcm5U and that purified ABH8 complexes methylate RNA in vitro. Significantly, ABH8 depletion in human cells reduces endogenous levels of mcm[superscript 5]U in RNA and increases cellular sensitivity to DNA-damaging agents. Moreover, DNA-damaging agents induce ABH8 expression in an ATM-dependent manner. These results expand the role of mammalian AlkB proteins beyond that of direct DNA repair and support a regulatory mechanism in the DNA damage response pathway involving modulation of tRNA modification.United States. National Institutes of Health (grant CA055042)United States. National Institutes of Health (grant ES002109)United States. National Institutes of Health (grant ES01701)National Institutes of Health (U.S.). Intramural Research ProgramWestaway Research FundNational Center for Research Resources (U.S.) (grant S10-RR023783

    The connection between stellar mass, age and quenching timescale in massive quiescent galaxies at z1z \simeq 1

    Get PDF
    We present a spectro-photometric study of a mass-complete sample of quiescent galaxies at 1.0<z<1.31.0 < z < 1.3 with log10(M/M)10.3\mathrm{log_{10}}(M_{\star}/\mathrm{M_{\odot}}) \geq 10.3 drawn from the VANDELS survey, exploring the relationship between stellar mass, age and star-formation history. Within our sample of 114 galaxies, we derive a stellar-mass vs stellar-age relation with a slope of 1.200.27+0.281.20^{+0.28}_{-0.27} Gyr per decade in stellar mass. When combined with recent literature results, we find evidence that the slope of this relation remains consistent over the redshift interval 0<z<40<z<4. The galaxies within the VANDELS quiescent display a wide range of star-formation histories, with a mean star-formation timescale of 1.5±0.11.5\pm{0.1} Gyr and a mean quenching timescale of 1.4±0.11.4\pm{0.1} Gyr. We also find a large scatter in the quenching timescales of the VANDELS quiescent galaxies, in agreement with previous evidence that galaxies at z1z \sim 1 cease star formation via multiple mechanisms. We then focus on the oldest galaxies in our sample, finding that the number density of galaxies that quenched before z=3z = 3 with stellar masses log10(M/M)10.6\mathrm{log_{10}}(M_{\star}/\mathrm{M_{\odot}}) \geq 10.6 is 1.120.72+1.47×105 Mpc3 1.12_{-0.72}^{+1.47} \times 10^{-5} \ \mathrm{Mpc}^{-3}. Although uncertain, this estimate is in good agreement with the latest observational results at 3<z<43<z<4, tentatively suggesting that neither rejuvenation nor merger events are playing a major role in the evolution of the oldest massive quiescent galaxies within the redshift interval 1<z<31<z<3.Comment: Accepted for publication in MNRAS, 11 pages, 6 figure

    A Quantitative Systems Approach Reveals Dynamic Control of tRNA Modifications during Cellular Stress

    Get PDF
    Decades of study have revealed more than 100 ribonucleoside structures incorporated as post-transcriptional modifications mainly in tRNA and rRNA, yet the larger functional dynamics of this conserved system are unclear. To this end, we developed a highly precise mass spectrometric method to quantify tRNA modifications in Saccharomyces cerevisiae. Our approach revealed several novel biosynthetic pathways for RNA modifications and led to the discovery of signature changes in the spectrum of tRNA modifications in the damage response to mechanistically different toxicants. This is illustrated with the RNA modifications Cm, m[superscript 5]C, and m[superscript 2][subscript 2]G, which increase following hydrogen peroxide exposure but decrease or are unaffected by exposure to methylmethane sulfonate, arsenite, and hypochlorite. Cytotoxic hypersensitivity to hydrogen peroxide is conferred by loss of enzymes catalyzing the formation of Cm, m[superscript 5]C, and m[superscript 2][subscript 2]G, which demonstrates that tRNA modifications are critical features of the cellular stress response. The results of our study support a general model of dynamic control of tRNA modifications in cellular response pathways and add to the growing repertoire of mechanisms controlling translational responses in cells.National Institute of Environmental Health Sciences (ES002109)National Institute of Environmental Health Sciences (ES017010)National Institute of Environmental Health Sciences (ES015037)National Cancer Institute (U.S.) (CA026731)National Center for Research Resources (U.S.) (RR023783)Singapore-MIT Alliance for Research and Technolog

    Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    Get PDF
    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments

    Strained tetragonal states and Bain paths in metals

    Full text link
    Paths of tetragonal states between two phases of a material, such as bcc and fcc, are called Bain paths. Two simple Bain paths can be defined in terms of special imposed stresses, one of which applies directly to strained epitaxial films. Each path goes far into the range of nonlinear elasticity and reaches a range of structural parameters in which the structure is inherently unstable. In this paper we identify and analyze the general properties of these paths by density functional theory. Special examples include vanadium, cobalt and copper, and the epitaxial path is used to identify an epitaxial film as related uniquely to a bulk phase.Comment: RevTeX, 4 pages, 4 figures, submitted to Phys. Rev. Let
    corecore