390 research outputs found

    Grapevine DNA polymorphisms revealed by microsatellite-derived markers from soybean and rice

    Get PDF
    We report detection of DNA polymorphisms in grapevine by the use of microsatellite-flanking primer pairs from soybean and rice. These “cross species” microsatellite-derived markers were checked for their inheritance patterns in controlled grapevine crosses. They produced multiple bands that segregated and can be scored as individual genetic markers of dominant type. Employed in genetic mapping studies they offer advantages such as improved reproducibility in comparison to commonly used multi-locus marker systems like RAPDs and AFLPs.

    Powdery mildew responsive genes of resistant grapevine cultivar 'Regent'

    Get PDF
    The ascomycete Erysiphe necator causes powdery mildew disease of grapevine, a disastrous infection which is commonly defeated with multiple fungicide applications in viticulture. Breeding for natural resistance of quality grapes (Vitis vinifera) is thus a major aim of current efforts. The cultivar 'Regent' is resistant to powdery mildew due to an introgression from an American Vitis sp. resistance donor. To identify key regulatory elements in defense responses of 'Regent' we performed transcript analyses after challenging with E. necator inoculation in comparison with a susceptible grapevine. A set of genes selected from preliminary microarray hybridization results were investigated by RT-qPCR. The data indicate an important role of transcription factors MYB15, WRKY75, WRKY33, WRKY7, ethylene responsive transcription factors ERF2 and ERF5 as well as a CZF1/ZFAR transcripton factor in regulating the early defense when the fungus starts the interaction with its host by the formation of haustoria

    High-resolution 3D phenotyping of the grapevine root system using X-ray Computed Tomography

    Get PDF
    Plant roots are essential for water and nutrient uptake and contribute to the plants' response to environmental stress factors. As the hidden half of a plant, investigation of root systems is highly challenging, most of available methods are destructive and very labour-intensive. In this proof-of-concept study, a non-invasive X-ray micro computed tomography (X-ray µCT) method was applied to investigate the phenotypic variation of the complex three-dimensional (3D) architecture of grapevine roots as a function of genotype and soil. Woody cuttings of 'Calardis Musqué', 'Villard Blanc' and V3125 ('Schiava Grossa' x 'Riesling') were cultivated in polypropylene columns filled with two different soil types, clay loam and sandy loam, for 6 weeks. Afterwards, the columns were scanned once using the technique of X-ray µCT. The received raw data were analysed for the reconstruction of 3D root system models (3D model), which display a non-destructive visualization of whole, intact root systems with a spatial resolution of 42 µm. The 3D models of all investigated plants (in total 18) were applied to quantify root system characteristics precisely by measuring adventitious root length, lateral root length, total root length, root system surface area, root system volume and root growth angles from the woody cutting relative to a horizontal axis. The results showed that: (i) early root formation and root growth differed between genotypes, especially between 'Calardis Musqué' and 'Villard Blanc'; and (ii) the soil type does influence adventitious root formation of V3125, but had minor effects on 'Calardis Musqué' and 'Villard Blanc'. In conclusion, this innovative, high-resolution method of X-ray µCT is suitable for high resolution phenotyping of root formation, architecture, and rooting characteristics of grapevine woody cuttings in a non-destructive manner, e.g. to investigate root response to drought stress and would provide new insights into phylloxera root infection

    Effects of canopy architecture and microclimate on grapevine health in two training systems

    Get PDF
    Semi minimal pruned hedge (SMPH) is a time and cost saving grapevine training system, which is becoming more and more popular in German viticulture. In this study we compared the canopy architecture and its effect on the microclimate of SMPH trained grapevines with those of plants trained in vertical shoot positioning (VSP). We detected a 3 % points higher humidity and a 0.9 °C lower mean temperature within the complex canopy architecture of SMPH trained vines compared to VSP. Moreover, we investigated the influence of the differing microclimate, canopy and bunch architecture, as well as berry skin characteristics of the two training systems on the incidence of the major fungal grapevine diseases Downy Mildew, Powdery Mildew and Botrytis Bunch Rot, as well as on the occurrence and damage of the invasive insect pest Drosophila suzukii. We demonstrate that SMPH trained vines can be more susceptible to Downy Mildew and Powdery Mildew than VSP trained vines. The incidence of Botrytis Bunch Rot can be higher in the latter system, even if berry skin characteristics are the same in both training systems. We trapped a higher number of D. suzukii in SMPH canopies, however no increased berry damage was observed. Based on our results we recommend a more adapted plant protection regime for SMPH trained vines due to their higher susceptibility to the major fungal diseases. Furthermore, we propose a combination of SMPH and fungal resistant grapevine cultivars, e.g. 'Reberger', to achieve a more competitive, environmentally friendly and high quality grapevine production

    Zero Order Estimates for Analytic Functions

    Full text link
    The primary goal of this paper is to provide a general multiplicity estimate. Our main theorem allows to reduce a proof of multiplicity lemma to the study of ideals stable under some appropriate transformation of a polynomial ring. In particular, this result leads to a new link between the theory of polarized algebraic dynamical systems and transcendental number theory. On the other hand, it allows to establish an improvement of Nesterenko's conditional result on solutions of systems of differential equations. We also deduce, under some condition on stable varieties, the optimal multiplicity estimate in the case of generalized Mahler's functional equations, previously studied by Mahler, Nishioka, Topfer and others. Further, analyzing stable ideals we prove the unconditional optimal result in the case of linear functional systems of generalized Mahler's type. The latter result generalizes a famous theorem of Nishioka (1986) previously conjectured by Mahler (1969), and simultaneously it gives a counterpart in the case of functional systems for an important unconditional result of Nesterenko (1977) concerning linear differential systems. In summary, we provide a new universal tool for transcendental number theory, applicable with fields of any characteristic. It opens the way to new results on algebraic independence, as shown in Zorin (2010).Comment: 42 page

    Percolative phase separation induced by nonuniformly distributed excess oxygens

    Full text link
    The zero-field 139^{139}La and 55^{55}Mn nuclear magnetic resonances were studied in La0.8Ca0.2MnO3+δ\rm La_{0.8}Ca_{0.2}MnO_{3+\delta} with different oxygen stoichiometry δ\delta. The signal intensity, peak frequency and line broadening of the 139^{139}La NMR spectrum show that excess oxygens have a tendency to concentrate and establish local ferromagnetic ordering around themselves. These connect the previously existed ferromagnetic clusters embedded in the antiferromagnetic host, resulting in percolative conduction paths. This phase separation is not a charge segregation type, but a electroneutral type. The magnetoresistance peak at the temperature where percolative paths start to form provides a direct evidence that phase separation is one source of colossal magnetoresistance effect.Comment: 4 pages, 5 figure

    Nanosized Sodium-Doped Lanthanum Manganites: Role of the Synthetic Route on their Physical Properties

    Full text link
    In this paper we present the results of the synthesis and characterisation of nanocrystalline La1-xNaxMnO3+delta samples. Two synthetic routes were employed: polyacrylamide-based sol-gel and propellant synthesis. Pure, single phase materials were obtained with grain size around 35 nm for the sol-gel samples and around 55 nm for the propellant ones, which moreover present a more broaden grain size distribution. For both series a superparamagnetic behaviour was evidenced by means of magnetisation and EPR measurements with peculiar features ascribable to the different grain sizes and morphology. Preliminary magnetoresistivity measurements show enhanced low-field (< 1 T) magnetoresistance values which suggest an interesting applicative use of these manganites.Comment: 31 Pages 10 Figures to appear in Chem. Mate

    Magnetic and Cytotoxicity Properties of La1−xSrxMnO3(0 ≤ x ≤ 0.5) Nanoparticles Prepared by a Simple Thermal Hydro-Decomposition

    Get PDF
    This study reports the magnetic and cytotoxicity properties of magnetic nanoparticles of La1−xSrxMnO3(LSMO) withx = 0, 0.1, 0.2, 0.3, 0.4, and 0.5 by a simple thermal decomposition method by using acetate salts of La, Sr, and Mn as starting materials in aqueous solution. To obtain the LSMO nanoparticles, thermal decomposition of the precursor was carried out at the temperatures of 600, 700, 800, and 900 °C for 6 h. The synthesized LSMO nanoparticles were characterized by XRD, FT-IR, TEM, and SEM. Structural characterization shows that the prepared particles consist of two phases of LaMnO3(LMO) and LSMO with crystallite sizes ranging from 20 nm to 87 nm. All the prepared samples have a perovskite structure with transformation from cubic to rhombohedral at thermal decomposition temperature higher than 900 °C in LSMO samples ofx ≤ 0.3. Basic magnetic characteristics such as saturated magnetization (MS) and coercive field (HC) were evaluated by vibrating sample magnetometry at room temperature (20 °C). The samples show paramagnetic behavior for all the samples withx = 0 or LMO, and a superparamagnetic behavior for the other samples havingMSvalues of ~20–47 emu/g and theHCvalues of ~10–40 Oe, depending on the crystallite size and thermal decomposition temperature. Cytotoxicity of the synthesized LSMO nanoparticles was also evaluated with NIH 3T3 cells and the result shows that the synthesized nanoparticles were not toxic to the cells as determined from cell viability in response to the liquid extract of LSMO nanoparticles
    corecore