43 research outputs found

    The variable functional effects of the pacing site in normal and scarred ventricles

    Get PDF
    The pacing site has been shown to influence functional improvement with cardiac resynchronization therapy. We evaluated the effects of the pacing site on left ventricular (LV) function in an animal model. Equilibrium radionuclide angiography was acquired in sinus rhythm (NSR) and with ventricular pacing, from three pacing sites in seven normal and eight infarcted dogs. QRS duration, electrical activation pattern, wall motion, LV ejection fraction (EF), synchrony of ventricular contraction, and mean arterial pressure (MAP), were related to the pacing site and infarct size, during each of 120 episodes. Little changed during pacing in normals. In infarcted dogs, LV wall motion, and synchrony worsened, LVEF and MAP often fell. These changes related to altered activation patterns which were influenced by the pacing site but were not related to infarct size. Hemodynamic and functional LV changes after infarction were found to vary with the pacing site and associated conduction and synchrony

    The relationship of myocardial contraction and electrical excitation—the correlation between scintigraphic phase image analysis and electrophysiologic mapping

    Get PDF
    Phase imaging derived from equilibrium radionuclide angiography presents the ventricular contraction sequence. It has been widely but only indirectly correlated with the sequence of electrical myocardial activation. We sought to determine the specific relationship between the sequence of phase progression and the sequence of myocardial activation, contraction and conduction, in order to document a noninvasive method that could monitor both. In 7 normal and 9 infarcted dogs, the sequence of phase angle was correlated with the epicardial activation map in 126 episodes of sinus rhythm and pacing from three ventricular sites. In each episode, the site of earliest phase angle was identical to the focus of initial epicardial activation. Similarly, the serial contraction pattern by phase image analysis matched the electrical epicardial activation sequence completely or demonstrated good agreement in approximately 85% of pacing episodes, without differences between normal or infarct groups. A noninvasive method to accurately determine the sequence of contraction may serve as a surrogate for the associated electrical activation sequence or be applied to identify their differences

    Thromboelastography-Guided Anticoagulant Therapy for the Double Hazard of Thrombohemorrhagic Events in COVID-19: A Report of 3 Cases

    Get PDF
    BACKGROUND: The novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), often manifests a coagulopathy in severely ill patients, which may cause hemorrhage and/or thrombosis of varying severity. This report comprises the cases of 3 patients with COVID-19-associated coagulopathy who were evaluated with thromboelastography (TEG) and activated partial thromboplastin time (aPTT) to enable personalized anticoagulant therapy. CASE REPORT: Three patients presented with COVID-19 pneumonia, confirmed by reverse transcription-polymerase chain reaction, who developed thrombohemorrhagic coagulopathy. Case 1: A 72-year-old woman on long-term warfarin therapy for a history of venous thromboembolism developed a right upper lobe pulmonary embolus, despite an international normalized ratio of 6.4 and aPTT of 120.7 s. TEG enabled successful anticoagulation with heparin, and her pulmonary infarct was no longer present 2 weeks later. Case 2: A 55-year-old woman developed a rectus sheath hematoma while on heparin, and TEG demonstrated increased fibrinolysis despite COVID-19 patients more commonly undergoing fibrinolytic shutdown. Case 3: A 43-year-old woman had significant thrombus burden while severely hypocoagulable according to laboratory testing. As the venous thrombi enlarged in a disseminated intravascular coagulopathic-like state, the heparin dose was escalated to achieve a target aPTT of 70 to 80 s, resulting in a flat line TEG tracing. CONCLUSIONS: These 3 cases of COVID-19 pneumonia with complex and varied clinical histories demonstrated the clinical value of TEG combined with the measurement of aPTT to facilitate personalized anticoagulation, resulting in good clinical outcomes

    Whole Blood, Fixed Ratio, or Goal-Directed Blood Component Therapy for the Initial Resuscitation of Severely Hemorrhaging Trauma Patients: A Narrative Review

    Get PDF
    This narrative review explores the pathophysiology, geographic variation, and historical developments underlying the selection of fixed ratio versus whole blood resuscitation for hemorrhaging trauma patients. We also detail a physiologically driven and goal-directed alternative to fixed ratio and whole blood, whereby viscoelastic testing guides the administration of blood components and factor concentrates to the severely bleeding trauma patient. The major studies of each resuscitation method are highlighted, and upcoming comparative trials are detailed

    Preventing Thrombohemorrhagic Complications of Heparinized COVID-19 Patients Using Adjunctive Thromboelastography: A Retrospective Study

    Get PDF
    BACKGROUND: The treatment of COVID-19 patients with heparin is not always effective in preventing thrombotic complications, but can also be associated with bleeding complications, suggesting a balanced approach to anticoagulation is needed. A prior pilot study supported that thromboelastography and conventional coagulation tests could predict hemorrhage in COVID-19 in patients treated with unfractionated heparin or enoxaparin, but did not evaluate the risk of thrombosis. METHODS: This single-center, retrospective study included 79 severely ill COVID-19 patients anticoagulated with intermediate or therapeutic dose unfractionated heparin. Two stepwise logistic regression models were performed with bleeding or thrombosis as the dependent variable, and thromboelastography parameters and conventional coagulation tests as the independent variables. RESULTS: Among all 79 patients, 12 (15.2%) had bleeding events, and 20 (25.3%) had thrombosis. Multivariate logistic regression analysis identified a prediction model for bleeding (adjusted R2 = 0.787, p < 0.001) comprised of increased reaction time (p = 0.016), decreased fibrinogen (p = 0.006), decreased D-dimer (p = 0.063), and increased activated partial thromboplastin time (p = 0.084). Multivariate analysis of thrombosis identified a weak prediction model (adjusted R2 = 0.348, p < 0.001) comprised of increased D-dimer (p < 0.001), decreased reaction time (p = 0.002), increased maximum amplitude (p < 0.001), and decreased alpha angle (p = 0.014). Adjunctive thromboelastography decreased the use of packed red cells (p = 0.031) and fresh frozen plasma (p < 0.001). CONCLUSIONS: Significantly, this study demonstrates the need for a precision-based titration strategy of anticoagulation for hospitalized COVID-19 patients. Since severely ill COVID-19 patients may switch between thrombotic or hemorrhagic phenotypes or express both simultaneously, institutions may reduce these complications by developing their own titration strategy using daily conventional coagulation tests with adjunctive thromboelastography

    What’s in a price? the American raw cotton market in Liverpool and the Anglo-American war

    Get PDF
    This article argues that an embryonic futures market was present in Liverpool during the Anglo-American war. The analysis of a previously unseen dataset of printed Prices Currents has facilitated not only a price series of raw cotton prices, but an in-depth analysis of the ‘construction’ of those raw cotton prices. By positing a definition of.an embryonic futures market and then analysing each of the features of a such a market in turn, this study demonstrates the existence of an embryonic futures market in early nineteenth-century Liverpool
    corecore