83 research outputs found

    Brown Carbon in Primary and Aged Coal Combustion Emission

    Get PDF
    Smog chamber experiments were conducted to characterize the light absorption of brown carbon (BrC) from primary and photochemically aged coal combustion emissions. Light absorption was measured by the UV-visible spectrophotometric analysis of water and methanol extracts of filter samples. The single-scattering albedo at 450 nm was 0.73 ± 0.10 for primary emissions and 0.75 ± 0.13 for aged emissions. The light absorption coefficient at 365 nm of methanol extracts was higher than that of water extracts by a factor of 10 for primary emissions and a factor of 7 for aged emissions. This suggests that the majority of BrC is water-insoluble even after aging. The mass absorption efficiency of this BrC (MAE365) for primary OA (POA) was dependent on combustion conditions, with an average of 0.84 ± 0.54 m2 g-1, which was significantly higher than that for aged OA (0.24 ± 0.18 m2 g-1). Secondary OA (SOA) dominated aged OA and the decreased MAE365 after aging indicates that SOA is less light absorbing than POA and/or that BrC is bleached (oxidized) with aging. The estimated MAE365 of SOA (0.14 ± 0.08 m2 g-1) was much lower than that of POA. A comparison of MAE365 of residential coal combustion with other anthropogenic sources suggests that residential coal combustion emissions are among the strongest absorbing BrC organics

    Loss of lag-response curvilinearity of indices of heart rate variability in congestive heart failure

    Get PDF
    BACKGROUND: Heart rate variability (HRV) is known to be impaired in patients with congestive heart failure (CHF). Time-domain analysis of ECG signals traditionally relies heavily on linear indices of an essentially non-linear phenomenon. Poincaré plots are commonly used to study non-linear behavior of physiologic signals. Lagged Poincaré plots incorporate autocovariance information and analysis of Poincaré plots for various lags can provide interesting insights into the autonomic control of the heart. METHODS: Using Poincaré plot analysis, we assessed whether the relation of the lag between heart beats and HRV is altered in CHF. We studied the influence of lag on estimates of Poincaré plot indices for various lengths of beat sequence in a public domain data set (PhysioNet) of 29 subjects with CHF and 54 subjects with normal sinus rhythm. RESULTS: A curvilinear association was observed between lag and Poincaré plot indices (SD1, SD2, SDLD and SD1/SD2 ratio) in normal subjects even for a small sequence of 50 beats (p value for quadratic term 3 × 10(-5), 0.002, 3.5 × 10(-5 )and 0.0003, respectively). This curvilinearity was lost in patients with CHF even after exploring sequences up to 50,000 beats (p values for quadratic term > 0.5). CONCLUSION: Since lagged Poincaré plots incorporate autocovariance information, these analyses provide insights into the autonomic control of heart rate that is influenced by the non-linearity of the signal. The differences in lag-response in CHF patients and normal subjects exist even in the face of the treatment received by the CHF patients

    Long-term chemical analysis and organic aerosol source apportionment at 9 sites in Central Europe : Source identification and uncertainty assessment

    Get PDF
    Long-term monitoring of the organic aerosol is important for epidemiological studies, validation of atmospheric models, and air quality management. In this study, we apply a recently developed filter-based offline methodology of the 20 aerosol mass spectrometer to investigate the regional and seasonal differences of contributing organic aerosol sources. We present offline-AMS measurements for particulate matter smaller than 10 \u3bcm 9 stations in central Europe with different exposure characteristics for the entire year of 2013 (819 samples). The focus of this study is a detailed source apportionment analysis (using PMF) including in-depth assessment of the related uncertainties. Primary organic aerosol (POA) is separated in three components: hydrocarbon-like OA which is related to traffic emissions (HOA), cooking OA (COA), and biomass- 25 burning OA (BBOA). We observe enhanced production of secondary organic aerosol (SOA) in summer, following the increase in biogenic emissions with temperature (summer oxygenated OA, SOOA). In addition, a SOA component was extracted that correlated with anthropogenic secondary inorganic species which is dominant in winter (winter oxygenated OA, WOOA). A factor (SC-OA) explaining sulfur-containing fragments (CH3SO2+), which has an event-driven temporal behavior, was also identified. The relative yearly average factor contributions range for HOA from 3 to 15%, for COA from 30 3 to 31%, for BBOA from 11 to 61%, for SC-OA from 5 to 23%, for WOOA from 14 to 28%, and for SOOA from 14 to 40%. The uncertainty of the relative average factor contribution lies between 5 and 9% of OA. At the sites north of the alpine crest, the sum of HOA, COA, and BBOA (POA) contributes less to OA (POA/OA=0.3) than at the southern alpine valley sites (0.6). BBOA is the main contributor to POA with 88% in alpine valleys and 43% north of the alpine crest. Furthermore, the influence of primary biological particles (PBOA), not resolved by PMF, is estimated and could contribute significantly to OA in PM10

    Relationship between left ventricular geometry and left atrial size and function in patients with systemic hypertension.

    No full text
    • …
    corecore