5,970 research outputs found

    Efficacy of qualitative response assessment interpretation criteria at 18F-FDG PET-CT for predicting outcome in locally advanced cervical carcinoma treated with chemoradiotherapy

    Get PDF
    Objectives: To evaluate the utility of a standardized qualitative scoring system for treatment response assessment at 18F-FDG PET-CT in patients undergoing chemoradiotherapy for locally advanced cervical carcinoma and correlate this with subsequent patient outcome. Methods: Ninety-six consecutive patients with locally advanced cervical carcinoma treated with radical chemoradiotherapy (CRT) in a single centre between 2011 and 2014 underwent 18F-FDG PET-CT approximately 3 months post-treatment. Tumour metabolic response was assessed qualitatively using a 5-point scale ranging from background level activity only through to progressive metabolic disease. Clinical and radiological (MRI pelvis) follow-up was performed in all patients. Progression-free (PFS) and overall survival (OS) was calculated using the Kaplan-Meier method (Mantel-Cox log-rank) and correlated with qualitative score using Chi-squared test. Results: Forty patients (41.7 %) demonstrated complete metabolic response (CMR) on post-treatment PET-CT (Score 1/2) with 38 patients (95.0 %) remaining disease free after a minimum follow-up period of 18 months. Twenty-four patients (25.0 %) had indeterminate residual uptake (ID, Score 3) at primary or nodal sites after treatment, of these eight patients (33.3 %) relapsed on follow-up, including all patients with residual nodal uptake (n = 4Eleven11 of 17 patients (64.7 %) with significant residual uptake (partial metabolic response, PMR, Score 4) subsequently relapsed. In 15 patients (15.6 %) PET-CT demonstrated progressive disease (PD, Score 5) following treatment. Kaplan-Meier analysis showed a highly statistically significant difference in PFS and OS between patients with CMR, indeterminate uptake, PMR and PD (Log-rank, P < 0.0001). Chi-squared test demonstrated a highly statistically significant association between increasing qualitative score and risk of recurrence or death (P < 0.001). Conclusion: Use of a 5-point qualitative scoring system to assess metabolic response to CRT in locally advanced cervical carcinoma predicts survival outcome and this prognostic information may help guide further patient management

    The gold standard: accurate stellar and planetary parameters for eight Kepler M dwarf systems enabled by parallaxes

    Get PDF
    We report parallaxes and proper motions from the Hawaii Infrared Parallax Program for eight nearby M dwarf stars with transiting exoplanets discovered by Kepler. We combine our directly measured distances with mass-luminosity and radius–luminosity relationships to significantly improve constraints on the host stars’ properties. Our astrometry enables the identification of wide stellar companions to the planet hosts. Within our limited sample, all the multi-transiting planet hosts (three of three) appear to be single stars, while nearly all (four of five) of the systems with a single detected planet have wide stellar companions. By applying strict priors on average stellar density from our updated radius and mass in our transit fitting analysis, we measure the eccentricity probability distributions for each transiting planet. Planets in single-star systems tend to have smaller eccentricities than those in binaries, although this difference is not significant in our small sample. In the case of Kepler-42bcd, where the eccentricities are known to be ≃0, we demonstrate that such systems can serve as powerful tests of M dwarf evolutionary models by working in L⋆ − ρ⋆ space. The transit-fit density for Kepler- 42bcd is inconsistent with model predictions at 2.1σ (22%), but matches more empirical estimates at 0.2σ (2%), consistent with earlier results showing model radii of M dwarfs are underinflated. Gaia will provide high-precision parallaxes for the entire Kepler M dwarf sample, and TESS will identify more planets transiting nearby, late-type stars, enabling significant improvements in our understanding of the eccentricity distribution of small planets and the parameters of late-type dwarfs.Support for Program number HST-HF2-51364.001-A was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper. URL: http://www.tacc.utexas.edu. (HST-HF2-51364.001-A - NASA through Space Telescope Science Institute; NAS5-26555 - NASA; NNX09AF08G - NASA Office of Space Science; NASA Science Mission directorate

    Defect Dynamics for Spiral Chaos in Rayleigh-Benard Convection

    Full text link
    A theory of the novel spiral chaos state recently observed in Rayleigh-Benard convection is proposed in terms of the importance of invasive defects i.e defects that through their intrinsic dynamics expand to take over the system. The motion of the spiral defects is shown to be dominated by wave vector frustration, rather than a rotational motion driven by a vertical vorticity field. This leads to a continuum of spiral frequencies, and a spiral may rotate in either sense depending on the wave vector of its local environment. Results of extensive numerical work on equations modelling the convection system provide some confirmation of these ideas.Comment: Revtex (15 pages) with 4 encoded Postscript figures appende

    Perceived age discrimination across age in Europe: from an ageing society to a society for all ages

    Get PDF
    Ageism is recognized as a significant obstacle to older people's well-being, but age discrimination against younger people has attracted less attention. We investigate levels of perceived age discrimination across early to late adulthood, using data from the European Social Survey (ESS), collected in 29 countries (N = 56,272). We test for approximate measurement invariance across countries. We use local structural equation modeling as well as moderated nonlinear factor analysis to test for measurement invariance across age as a continuous variable. Using models that account for the moderate degree of noninvariance, we find that younger people report experiencing the highest levels of age discrimination. We also find that national context substantially affects levels of ageism experienced among older respondents. The evidence highlights that more research is needed to address ageism in youth and across the life span, not just old adulthood. It also highlights the need to consider factors that differently contribute to forms of ageism experienced by people at different life stages and ages.info:eu-repo/semantics/acceptedVersio

    Domain Coarsening in Systems Far from Equilibrium

    Get PDF
    The growth of domains of stripes evolving from random initial conditions is studied in numerical simulations of models of systems far from equilibrium such as Rayleigh-Benard convection. The scaling of the size of the domains deduced from the inverse width of the Fourier spectrum is studied for both potential and nonpotential models. The morphology of the domains and the defect structures are however quite different in the two cases, and evidence is presented for a second length scale in the nonpotential case.Comment: 11 pages, RevTeX; 3 uufiles encoded postscript figures appende

    A Pre-Protostellar Core in L1551

    Full text link
    Large field surveys of NH3, C2S, 13CO and C18O in the L1551 dark cloud have revealed a prolate, pre-protostellar molecular core (L1551-MC) in a relatively quiescent region to the northwest of the well-known IRS 5 source. The kinetic temperature is measured to be 9K, the total mass is ~2Msun, and the average particle density is 10^4-10^5 cm^(-3). L1551-MC is 2.25' x 1.11' in projection oriented at a position angle of 133deg. The turbulent motions are on the order of the sound speed in the medium and contain 4% of the gravitational energy, E_{grav}, of the core. The angular momentum vector is projected along the major axis of L1551-MC corresponding to a rotational energy of 2.5E-3(sin i)^(-2)|E_{grav}|. The thermal energy constitutes about a third of |E_{grav}| and the virial mass is approximately equal to the total mass. L1551-MC is gravitationally bound and in the absence of strong, ~160 microgauss, magnetic fields will likely contract on a ~0.3 Myr time scale. The line profiles of many molecular species suggest that the cold quiescent interior is surrounded by a dynamic, perhaps infalling envelope which is embedded within the ambient molecular gas of L1551.Comment: 27 pages, 7 figures, ApJ accepte

    Shock and Release Temperatures in Molybdenum

    Full text link
    Shock and release temperatures in Mo were calculated, taking account of heating from plastic flow predicted using the Steinberg-Guinan model. Plastic flow was calculated self-consistently with the shock jump conditions: this is necessary for a rigorous estimate of the locus of shock states accessible. The temperatures obtained were significantly higher than predicted assuming ideal hydrodynamic loading. The temperatures were compared with surface emission spectrometry measurements for Mo shocked to around 60GPa and then released into vacuum or into a LiF window. Shock loading was induced by the impact of a planar projectile, accelerated by high explosive or in a gas gun. Surface velocimetry showed an elastic wave at the start of release from the shocked state; the amplitude of the elastic wave matched the prediction to around 10%, indicating that the predicted flow stress in the shocked state was reasonable. The measured temperatures were consistent with the simulations, indicating that the fraction of plastic work converted to heat was in the range 70-100% for these loading conditions

    Renal Artery Stenosis and Ipsilateral Renal Cell Carcinoma: Description of an In Situ Partial Nephrectomy and Splenorenal Arterial Bypass

    Get PDF
    A case of a renal artery stenosis and ipsilateral renal cell carcinoma with long term results is reported. A 65-year-old man with renovascular hypertension, renal insufficiency, and nephrotic range proteinuria presented with an incidental renal cell carcinoma. Concomitant in situ left partial nephrectomy and splenorenal arterial bypass was achieved. The patient is doing well without evidence of malignancy, stable renal function, markedly improved proteinuria and stable blood pressure more than three years later. The techniques of this procedure are detailed and underscore the possibility of successful removal of a renal cell carcinoma with preservation of renal function despite renal artery stenosis

    Mass-radius relationships for exoplanets

    Full text link
    For planets other than Earth, interpretation of the composition and structure depends largely on comparing the mass and radius with the composition expected given their distance from the parent star. The composition implies a mass-radius relation which relies heavily on equations of state calculated from electronic structure theory and measured experimentally on Earth. We lay out a method for deriving and testing equations of state, and deduce mass-radius and mass-pressure relations for key materials whose equation of state is reasonably well established, and for differentiated Fe/rock. We find that variations in the equation of state, such as may arise when extrapolating from low pressure data, can have significant effects on predicted mass- radius relations, and on planetary pressure profiles. The relations are compared with the observed masses and radii of planets and exoplanets. Kepler-10b is apparently 'Earth- like,' likely with a proportionately larger core than Earth's, nominally 2/3 of the mass of the planet. CoRoT-7b is consistent with a rocky mantle over an Fe-based core which is likely to be proportionately smaller than Earth's. GJ 1214b lies between the mass-radius curves for H2O and CH4, suggesting an 'icy' composition with a relatively large core or a relatively large proportion of H2O. CoRoT-2b is less dense than the hydrogen relation, which could be explained by an anomalously high degree of heating or by higher than assumed atmospheric opacity. HAT-P-2b is slightly denser than the mass-radius relation for hydrogen, suggesting the presence of a significant amount of matter of higher atomic number. CoRoT-3b lies close to the hydrogen relation. The pressure at the center of Kepler-10b is 1.5+1.2-1.0 TPa. The central pressure in CoRoT-7b is probably close to 0.8TPa, though may be up to 2TPa.Comment: Added more recent exoplanets. Tidied text and references. Added extra "rock" compositions. Responded to referee comment

    SU(N) chiral gauge theories on the lattice

    Full text link
    We extend the construction of lattice chiral gauge theories based on non-perturbative gauge fixing to the non-abelian case. A key ingredient is that fermion doublers can be avoided at a novel type of critical point which is only accessible through gauge fixing, as we have shown before in the abelian case. The new ingredient allowing us to deal with the non-abelian case as well is the use of equivariant gauge fixing, which handles Gribov copies correctly, and avoids Neuberger's no-go theorem. We use this method in order to gauge fix the non-abelian group (which we will take to be SU(N)) down to its maximal abelian subgroup. Obtaining an undoubled, chiral fermion content requires us to gauge-fix also the remaining abelian gauge symmetry. This modifies the equivariant BRST identities, but their use in proving unitarity remains intact, as we show in perturbation theory. On the lattice, equivariant BRST symmetry as well as the abelian gauge invariance are broken, and a judiciously chosen irrelevant term must be added to the lattice gauge-fixing action in order to have access to the desired critical point in the phase diagram. We argue that gauge invariance is restored in the continuum limit by adjusting a finite number of counter terms. We emphasize that weak-coupling perturbation theory applies at the critical point which defines the continuum limit of our lattice chiral gauge theory.Comment: 39 pages, 3 figures, A number of clarifications adde
    corecore