67 research outputs found

    Novel technique for constraining r-process (n,γ\gamma) reaction rates

    Get PDF
    A novel technique has been developed, which will open exciting new opportunities for studying the very neutron-rich nuclei involved in the r-process. As a proof-of-principle, the γ\gamma-spectra from the β\beta-decay of 76^{76}Ga have been measured with the SuN detector at the National Superconducting Cyclotron Laboratory. The nuclear level density and γ\gamma-ray strength function are extracted and used as input to Hauser-Feshbach calculations. The present technique is shown to strongly constrain the 75^{75}Ge(n,γn,\gamma)76^{76}Ge cross section and reaction rate.Comment: 5 pages, 3 figure

    High-Precision Measurement of the 19Ne Half-Life and Implications for Right-Handed Weak Currents

    Full text link
    We report a precise determination of the 19Ne half-life to be T1/2=17.262±0.007T_{1/2} = 17.262 \pm 0.007 s. This result disagrees with the most recent precision measurements and is important for placing bounds on predicted right-handed interactions that are absent in the current Standard Model. We are able to identify and disentangle two competing systematic effects that influence the accuracy of such measurements. Our findings prompt a reassessment of results from previous high-precision lifetime measurements that used similar equipment and methods.Comment: 5 pages and 5 figures. Paper accepted for publication in Phys. Rev. Let

    Ground State Electromagnetic Moments of <sup>37</sup>Ca

    No full text
    The hyperfine coupling constants of neutron deficient 37^{37}Ca were deduced from the atomic hyperfine spectrum of the 4s 2S1/24s~^2S_{1/2} ↔\leftrightarrow 4p 2P3/24p~^2P_{3/2} transition in Ca II, measured using the collinear laser spectroscopy technique. The ground-state magnetic-dipole and spectroscopic electric-quadrupole moments were determined for the first time as μ=+0.7453(72)μN\mu = +0.7453(72) \mu_N and Q=−15(11)Q = -15(11) e2e^2fm2^2, respectively. The experimental values agree well with nuclear shell model calculations using the universal sd model-space Hamiltonians versions A and B (USDA/B) in the sdsd-model space with a 95\% probability of the canonical nucleon configuration. It is shown that the magnetic moment of 39^{39}Ca requires a larger non-sdsd-shell component than that of 37^{37}Ca for good agreement with the shell-model calculation, indicating a more robust closed sub-shell structure of 36^{36}Ca at the neutron number NN = 16 than 40^{40}Ca. The results are also compared to valence-space in-medium similarity renormalization group calculations based on chiral two- and three-nucleon interactions

    β-decay Half-lives of Neutron-rich Nuclides in the A = 100 – 110 Mass Region

    Get PDF
    β-decay half-lives of neutron-rich nuclides in the A = 100–110 mass region have been measured using an implantation station installed inside of the Summing NaI(Tl) (SuN) detector at the National Superconducting Cyclotron Laboratory. Accurate half-lives for these nuclides are important for nuclear astrophysics, nuclear structure, and nuclear technology. The half-lives from the present work are compared with previous measurements, showing overall good agreement

    High-precision half-life and branching-ratio measurements for superallowed Fermi β \u3csup\u3e+\u3c/sup\u3e emitters at TRIUMF - ISAC

    Get PDF
    A program of high-precision half-life and branching-ratio measurements for superallowed Fermi β emitters is being carried out at TRIUMF\u27s Isotope Separator and Accelerator (ISAC) radioactive ion beam facility. Recent half-life measurements for the superallowed decays of 14O, 18Ne, and 26Alm, as well as branching-ratio measurements for 26Alm and 74Rb are reported. These results provide demanding tests of the Standard Model and the theoretical isospin symmetry breaking (ISB) corrections in superallowed Fermi β decays. © Owned by the authors, published by EDP Sciences, 2014
    • …
    corecore