634 research outputs found

    How Tribo-Oxidation Alters the Tribological Properties of Copper and Its Oxides

    Get PDF
    Tribochemical reactions in many applications determine the performance and lifetime of individual parts or entire engineering systems. The underlying processes are however not yet fully understood. Here, the tribological properties of copper and its oxides are investigated under mild tribological loading and for dry sliding. The oxides represent the late stages of a copper–sapphire tribo‐contact, once the whole copper surface is covered with an oxide. For this purpose, high‐purity copper, thermally‐oxidized and sintered Cu2_{2}O and CuO samples are tribologically loaded and eventually formed wear particles analyzed. The tribological behavior of the oxides is found to be beneficial for a reduction of the coefficient of friction (COF), mainly due to an increase in hardness. The results reveal tribochemical reactions when copper oxides are present, irrespective of whether they form during sliding or are existent from the beginning. Most strikingly, a reduction of copper oxide to metallic copper is observed in X‐ray photoelectron spectroscopy measurements. A more accurate understanding of tribo‐oxidation will allow for manufacturing well‐defined surfaces with enhanced tribological properties. This paves the way for extending the lifetime of contacts evincing tribo‐oxidation

    How Tribo-Oxidation Alters the Tribological Properties of Copper and Its Oxides

    Get PDF
    Tribochemical reactions in many applications determine the performance and lifetime of individual parts or entire engineering systems. The underlying processes are however not yet fully understood. Here, the tribological properties of copper and its oxides are investigated under mild tribological loading and for dry sliding. The oxides represent the late stages of a copper–sapphire tribo‐contact, once the whole copper surface is covered with an oxide. For this purpose, high‐purity copper, thermally‐oxidized and sintered Cu2_{2}O and CuO samples are tribologically loaded and eventually formed wear particles analyzed. The tribological behavior of the oxides is found to be beneficial for a reduction of the coefficient of friction (COF), mainly due to an increase in hardness. The results reveal tribochemical reactions when copper oxides are present, irrespective of whether they form during sliding or are existent from the beginning. Most strikingly, a reduction of copper oxide to metallic copper is observed in X‐ray photoelectron spectroscopy measurements. A more accurate understanding of tribo‐oxidation will allow for manufacturing well‐defined surfaces with enhanced tribological properties. This paves the way for extending the lifetime of contacts evincing tribo‐oxidation

    The Curved MCA: Influence of Vessel Anatomy on Recanalization Results of Mechanical Thrombectomy after Acute Ischemic Stroke

    Get PDF
    ABSTRACT BACKGROUND AND PURPOSE: Vessel anatomy is assumed to influence results of endovascular mechanical thrombectomy using stent retrievers. The purpose of this study was to analyze the influence of vessel curvature on recanalization results in patients with acute ischemic stroke caused by large-vessel occlusion

    Identification of regeneration-associated genes after central and peripheral nerve injury in the adult rat

    Get PDF
    Background: It is well known that neurons of the peripheral nervous system have the capacity to regenerate a severed axon leading to functional recovery, whereas neurons of the central nervous system do not regenerate successfully after injury. The underlying molecular programs initiated by axotomized peripheral and central nervous system neurons are not yet fully understood.Results: To gain insight into the molecular mechanisms underlying the process of regeneration in the nervous system, differential display polymerase chain reaction has been used to identify differentially expressed genes following axotomy of peripheral and central nerve fibers. For this purpose, axotomy induced changes of regenerating facial nucleus neurons, and non-regenerating red nucleus and Clarke's nucleus neurons have been analyzed in an intra-animal side-to-side comparison. One hundred and thirty five gene fragments have been isolated, of which 69 correspond to known genes encoding for a number of different functional classes of proteins such as transcription factors, signaling molecules, homeobox-genes, receptors and proteins involved in metabolism. Sixty gene fragments correspond to genomic mouse sequences without known function. In situ-hybridization has been used to confirm differential expression and to analyze the cellular localization of these gene fragments. Twenty one genes (similar to 15%) have been demonstrated to be differentially expressed.Conclusions: The detailed analysis of differentially expressed genes in different lesion paradigms provides new insights into the molecular mechanisms underlying the process of regeneration and may lead to the identification of genes which play key roles in functional repair of central nervous tissues

    Mitochondrial precursor proteins are imported through a hydrophilic membrane environment

    Get PDF
    We have analyzed how translocation intermediates of imported mitochondrial precursor proteins, which span contact sites, interact with the mitochondrial membranes. F1-ATPase subunit β(F1β) was trapped at contact sites by importing it into Neurospora mitochondria in the presence of low levels of nucleoside triphosphates. This F1β translocation intermediate could be extracted from the membranes by treatment with protein denaturants such as alkaline pH or urea. By performing import at low temperatures, the ADP/ATP carrier was accumulated in contact sites of Neurospora mitochondria and cytochrome b2 in contact sites of yeast mitochondria. These translocation intermediates were also extractable from the membranes at alkaline pH. Thus, translocation of precursor proteins across mitochondrial membranes seems to occur through an environment which is accessible to aqueous perturbants. We propose that proteinaceous structures are essential components of a translocation apparatus present in contact sites

    In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma

    Get PDF
    CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination and poor prognosis. We evaluated the novel CXCR4 probe [(68)Ga]Pentixafor for in vivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [(68)Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [(68)Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [(18)F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34(+) flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [(68)Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases

    Biogenesis of the mitochondrial phosphate carrier

    Get PDF
    The mitochondrial phosphate carrier (PiC) is a member of the family of inner-membrane carrier proteins which are generally synthesized without a cleavable presequence. Surprisingly, the cDNA sequences of bovine and rat PiC suggested the existence of an amino-terminal extension sequence in the precursor of PiC. By expressing PiC in vitro, we found that PiC is indeed synthesized as a larger precursor. This precursor was imported and proteolytically processed by mitochondria, whereby the correct amino-terminus of the mature protein was generated. Import of PiC showed the characteristics of mitochondrial protein uptake, such as dependence on ATP and a membrane potential and involvement of contact sites between mitochondrial outer and inner membranes. The precursor imported in vitro was correctly assembled into the functional form, demonstrating that the authentic import and assembly pathway of PiC was reconstituted when starting with the presequence-carrying precursor. These results are discussed in connection with the recently postulated role of PiC as an import receptor located in the outer membrane

    Biogenesis of mitochondrial porin

    Get PDF
    We review here the present knowledge about the pathway of import and assembly of porin into mitochondria and compare it to those of other mitochondrial proteins. Porin, like all outer mitochondrial membrane proteins studied so far is made as a precursor without a cleavble lsquosignalrsquo sequence; thus targeting information must reside in the mature sequence. At least part of this information appears to be located at the amino-terminal end of the molecule. Transport into mitochondria can occur post-translationally. In a first step, the porin precursor is specifically recognized on the mitochondrial surface by a protease sensitive receptor. In a second step, porin precursor inserts partially into the outer membrane. This step is mediated by a component of the import machinery common to the import pathways of precursor proteins destined for other mitochondrial subcompartments. Finally, porin is assembled to produce the functional oligomeric form of an integral membrane protein wich is characterized by its extreme protease resistance
    • …
    corecore