13,999 research outputs found

    Time Dependent Clustering Analysis of the Second BATSE Gamma-Ray Burst Catalog

    Get PDF
    A time dependent two-point correlation-function analysis of the BATSE 2B catalog finds no evidence of burst repetition. As part of this analysis, we discuss the effects of sky exposure on the observability of burst repetition and present the equation describing the signature of burst repetition in the data. For a model of all burst repetition from a source occurring in less than five days we derive upper limits on the number of bursts in the catalog from repeaters and model-dependent upper limits on the fraction of burst sources that produce multiple outbursts.Comment: To appear in the Astrophysical Journal Letters, uuencoded compressed PostScript, 11 pages with 4 embedded figure

    Synthesis, Structure and Properties of Tetragonal Sr2M3As2O2 (M3 = Mn3, Mn2Cu and MnZn2) Compounds Containing Alternating CuO2-Type and FeAs-Type Layers

    Full text link
    Polycrystalline samples of Sr2Mn2CuAs2O2, Sr2Mn3As2O2, and Sr2Zn2MnAs2O2 were synthesized. Their temperature- and applied magnetic field-dependent structural, transport, thermal, and magnetic properties were characterized by means of x-ray and neutron diffraction, electrical resistivity rho, heat capacity, magnetization and magnetic susceptibility measurements. These compounds have a body-centered-tetragonal crystal structure (space group I4/mmm) that consists of MO2 (M = Zn and/or Mn) oxide layers similar to the CuO2 layers in high superconducting transition temperature Tc cuprate superconductors, and intermetallic MAs (M = Cu and/or Mn) layers similar to the FeAs layers in high-Tc pnictides. These two types of layers alternate along the crystallographic c-axis and are separated by Sr atoms. The site occupancies of Mn, Cu and Zn were studied using Rietveld refinements of x-ray and neutron powder diffraction data. The temperature dependences of rho suggest metallic character for Sr2Mn2CuAs2O2 and semiconducting character for Sr2Mn3As2O2 and Sr2Zn2MnAs2O2. Sr2Mn2CuAs2O2 is inferred to be a ferrimagnet with a Curie temperature TC = 95(1) K. Remarkably, we find that the magnetic ground state structure changes from a G-type antiferromagnetic structure in Sr2Mn3As2O2 to an A-type ferrimagnetic structure in Sr2Mn2CuAs2O2 in which the Mn ions in each layer are ferromagnetically aligned, but are antiferromagnetically aligned between layers.Comment: 18 pages, 16 figures, 6 tables; submitted to Phys. Rev.

    Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure.

    Get PDF
    Inflammation enhances the secretion of sphingomyelinases (SMases). SMases catalyze the hydrolysis of sphingomyelin into phosphocholine and ceramide. In erythrocytes, ceramide formation leads to exposure of the removal signal phosphatidylserine (PS), creating a potential link between SMase activity and anemia of inflammation. Therefore, we studied the effects of SMase on various pathophysiologically relevant parameters of erythrocyte homeostasis. Time-lapse confocal microscopy revealed a SMase-induced transition from the discoid to a spherical shape, followed by PS exposure, and finally loss of cytoplasmic content. Also, SMase treatment resulted in ceramide-associated alterations in membrane-cytoskeleton interactions and membrane organization, including microdomain formation. Furthermore, we observed increases in membrane fragility, vesiculation and invagination, and large protein clusters. These changes were associated with enhanced erythrocyte retention in a spleen-mimicking model. Erythrocyte storage under blood bank conditions and during physiological aging increased the sensitivity to SMase. A low SMase activity already induced morphological and structural changes, demonstrating the potential of SMase to disturb erythrocyte homeostasis. Our analyses provide a comprehensive picture in which ceramide-induced changes in membrane microdomain organization disrupt the membrane-cytoskeleton interaction and membrane integrity, leading to vesiculation, reduced deformability, and finally loss of erythrocyte content. Understanding these processes is highly relevant for understanding anemia during chronic inflammation, especially in critically ill patients receiving blood transfusions

    Elevated levels of interleukin-12/23p40 may serve as a potential indicator of dysfunctional heart rate variability in type 2 diabetes

    Get PDF
    BACKGROUND: Systemic inflammatory processes plausibly contribute to the development of cardiovascular complications, causing increased morbidity and mortality in type 2 diabetes. Circulating inflammatory markers, i.e., interleukin (IL)-6 and tumour necrosis factor-α, are associated with neurocardiac measures. We examined a broad panel of various inflammatory and inflammation-related serum markers to obtain more detailed insight into the possible neuro-immune interaction between cardiovascular regulation and systemic level of inflammation. METHODS: Serum samples from 100 participants with type 2 diabetes were analysed. Heart rate variability, cardiovascular autonomic reflex tests, and cardiac vagal tone tests were performed based on electrocardiographic readings. Data regarding covariates (demographic-, diabetes-, and cardiovascular risk factors) were registered. RESULTS: Increased serum levels of IL-12/IL-23p40 (p  < 0.01) and intercellular adhesion molecule (ICAM)-1 (p  < 0.007) were associated with diminished heart rate variability measures. After all adjustments, the associations between IL-12/23p40, SDANN and VLF persisted (p  = 0.001). Additionally, serum levels of vascular endothelial growth factor (VEGF)-C were associated with response to standing (p  = 0.005). DISCUSSION: The few but robust associations between neurocardiac regulation and serum markers found in this study suggest systemic changes in proinflammatory, endothelial, and lymphatic function, which collectively impacts the systemic cardiovascular function. Our results warrant further exploration of IL-12/IL-23p40, ICAM-1, and VEGF-C as possible cardiovascular biomarkers in T2D that may support future decisions regarding treatment strategies for improved patient care. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12933-021-01437-w

    Acute inhibition of MEK suppresses congenital melanocytic nevus syndrome in a murine model driven by activated NRAS and Wnt signaling

    Get PDF
    Congenital melanocytic nevus (CMN) syndrome is the association of pigmented melanocytic nevi with extra-cutaneous features, classically melanotic cells within the central nervous system, most frequently caused by a mutation of NRAS codon 61. This condition is currently untreatable and carries a significant risk of melanoma within the skin, brain, or leptomeninges. We have previously proposed a key role for Wnt signaling in the formation of melanocytic nevi, suggesting that activated Wnt signaling may be synergistic with activated NRAS in the pathogenesis of CMN syndrome. Some familial pre-disposition suggests a germ-line contribution to CMN syndrome, as does variability of neurological phenotypes in individuals with similar cutaneous phenotypes. Accordingly, we performed exome sequencing of germ-line DNA from patients with CMN to reveal rare or undescribed Wnt-signaling alterations. A murine model harboring activated NRASQ61K and Wnt signaling in melanocytes exhibited striking features of CMN syndrome, in particular neurological involvement. In the first model of treatment for this condition, these congenital, and previously assumed permanent, features were profoundly suppressed by acute post-natal treatment with a MEK inhibitor. These data suggest that activated NRAS and aberrant Wnt signaling conspire to drive CMN syndrome. Post-natal MEK inhibition is a potential candidate therapy for patients with this debilitating condition

    MedZIM: Mediation analysis for Zero-Inflated Mediators with applications to microbiome data

    Full text link
    The human microbiome can contribute to the pathogenesis of many complex diseases such as cancer and Alzheimer's disease by mediating disease-leading causal pathways. However, standard mediation analysis is not adequate in the context of microbiome data due to the excessive number of zero values in the data. Zero-valued sequencing reads, commonly observed in microbiome studies, arise for technical and/or biological reasons. Mediation analysis approaches for analyzing zero-inflated mediators are still lacking largely because of challenges raised by the zero-inflated data structure: (a) disentangling the mediation effect induced by the point mass at zero; and (b) identifying the observed zero-valued data points that are actually not zero (i.e., false zeros). We develop a novel mediation analysis method under the potential-outcomes framework to fill this gap. We show that the mediation effect of the microbiome can be decomposed into two components that are inherent to the two-part nature of zero-inflated distributions. The first component corresponds to the mediation effect attributable to a unit-change over the positive relative abundance and the second component corresponds to the mediation effect attributable to discrete binary change of the mediator from zero to a non-zero state. With probabilistic models to account for observing zeros, we also address the challenge with false zeros. A comprehensive simulation study and the applications in two real microbiome studies demonstrate that our approach outperforms existing mediation analysis approaches.Comment: Corresponding: Zhigang L

    UK Housing Market: Time Series Processes with Independent and Identically Distributed Residuals

    Get PDF
    The paper examines whether a univariate data generating process can be identified which explains the data by having residuals that are independent and identically distributed, as verified by the BDS test. The stationary first differenced natural log quarterly house price index is regressed, initially with a constant variance and then with a conditional variance. The only regression function that produces independent and identically distributed standardised residuals is a mean process based on a pure random walk format with Exponential GARCH in mean for the conditional variance. There is an indication of an asymmetric volatility feedback effect but higher frequency data is required to confirm this. There could be scope for forecasting the index but this is tempered by the reduction in the power of the BDS test if there is a non-linear conditional variance process

    Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury.

    Get PDF
    Although axonal regeneration after CNS injury is limited, partial injury is frequently accompanied by extensive functional recovery. To investigate mechanisms underlying spontaneous recovery after incomplete spinal cord injury, we administered C7 spinal cord hemisections to adult rhesus monkeys and analyzed behavioral, electrophysiological and anatomical adaptations. We found marked spontaneous plasticity of corticospinal projections, with reconstitution of fully 60% of pre-lesion axon density arising from sprouting of spinal cord midline-crossing axons. This extensive anatomical recovery was associated with improvement in coordinated muscle recruitment, hand function and locomotion. These findings identify what may be the most extensive natural recovery of mammalian axonal projections after nervous system injury observed to date, highlighting an important role for primate models in translational disease research
    • …
    corecore