20 research outputs found

    Pelleting torrefied biomass at pilot-scale – Quality and implications for co-firing

    No full text
    The co-firing of solid biofuels in coal plants is an attractive and fast-track means of cutting emissions but its potential is linked to biomass densification. For torrefied materials this topic is under-represented in literature. This pilot-scale (121–203 kg h−1) pelleting study generated detailed knowledge on the densification of torrefied biomass compared to untreated biomass. Four feedstock with high supply availability (beech, poplar, wheat straw and corn cob) were studied in their untreated and torrefied forms. Systematic methods were used to produce 180 batches of 8 mm dia. pellets using press channel length (PCL) and moisture content (MC) ranges of 30–60 mm and 7.3–16.6% (wet basis) respectively. Analysis showed that moderate degrees of torrefaction (250–280 °C, 20–75 min) strongly affected pelleting behaviour. The highest quality black pellets had a mechanical durability and bulk density range of 87.5–98.7% and 662–697 kg m−3 respectively. Pelleting energy using torrefied feedstock varied from −15 to +53 kWh t−1 from untreated with increases in production fines. Optimal pelleting MC and PCL were reduced significantly for torrefied feedstock and pellet quality was characterised by a decrease in mechanical durability and an increase in bulk density. Energy densities of 11.9–13.2 GJ m−3 (as received) were obtained

    A Phase 2 Trial of the Effect of Antiandrogen Therapy on COVID-19 Outcome : No Evidence of Benefit, Supported by Epidemiology and In Vitro Data

    No full text
    Background: Men are more severely affected by COVID-19. Testosterone may influence SARS-CoV-2 infection and the immune response. Objective: To clinically, epidemiologically, and experimentally evaluate the effect of antiandrogens on SARS-CoV-2 infection. Designs, settings, and participants: A randomized phase 2 clinical trial (COVIDENZA) enrolled 42 hospitalized COVID-19 patients before safety evaluation. We also conducted a population-based retrospective study of 7894 SARS-CoV-2–positive prostate cancer patients and an experimental study using an air-liquid interface three-dimensional culture model of primary lung cells. Intervention: In COVIDENZA, patients were randomized 2:1 to 5 d of enzalutamide or standard of care. Outcome measurements: The primary outcomes in COVIDENZA were the time to mechanical ventilation or discharge from hospital. The population-based study investigated risk of hospitalization, intensive care, and death from COVID-19 after androgen inhibition. Results and limitations: Enzalutamide-treated patients required longer hospitalization (hazard ratio [HR] for discharge from hospital 0.43, 95% confidence interval [CI] 0.20–0.93) and the trial was terminated early. In the epidemiological study, no preventive effects were observed. The frail population of patients treated with androgen deprivation therapy (ADT) in combination with abiraterone acetate or enzalutamide had a higher risk of dying from COVID-19 (HR 2.51, 95% CI 1.52–4.16). In vitro data showed no effect of enzalutamide on virus replication. The epidemiological study has limitations that include residual confounders. Conclusions: The results do not support a therapeutic effect of enzalutamide or preventive effects of bicalutamide or ADT in COVID-19. Thus, these antiandrogens should not be used for hospitalized COVID-19 patients or as prevention for COVID-19. Further research on these therapeutics in this setting are not warranted. Patient summary: We studied whether inhibition of testosterone could diminish COVID-19 symptoms. We found no evidence of an effect in a clinical study or in epidemiological or experimental investigations. We conclude that androgen inhibition should not be used for prevention or treatment of COVID-19
    corecore