383 research outputs found

    Ocean Surface Roughness (Extended Abstract)

    Get PDF
    This abstract contains information relevant to the use of wave information for naval operations, education, and alternative energy technologies, and was used, along with the Session Presentation, to facilitate discussion during Session 1 (the use of wave measurements to support operations)

    An International Prospective Cohort Study To Validate 2 Prediction Rules for Infections Caused by Third-generation Cephalosporin-resistant Enterobacterales

    Get PDF
    Background The possibility of bloodstream infections caused by third-generation cephalosporin-resistant Enterobacterales (3GC-R-BSI) leads to a trade-off between empiric inappropriate treatment (IAT) and unnecessary carbapenem use (UCU). Accurately predicting 3GC-R-BSI could reduce IAT and UCU. We externally validate 2 previously derived prediction rules for community-onset (CO) and hospital-onset (HO) suspected bloodstream infections. Methods In 33 hospitals in 13 countries we prospectively enrolled 200 patients per hospital in whom blood cultures were obtained and intravenous antibiotics with coverage for Enterobacterales were empirically started. Cases were defined as 3GC-R-BSI or 3GC-R gram-negative infection (3GC-R-GNI) (analysis 2); all other outcomes served as a comparator. Model discrimination and calibration were assessed. Impact on carbapenem use was assessed at several cutoff points. Results 4650 CO infection episodes were included and the prevalence of 3GC-R-BSI was 2.1% (n = 97). IAT occurred in 69 of 97 (71.1%) 3GC-R-BSI and UCU in 398 of 4553 non–3GC-R-BSI patients (8.7%). Model calibration was good, and the AUC was .79 (95% CI, .75–.83) for 3GC-R-BSI. The prediction rule potentially reduced IAT to 62% (60/97) while keeping UCU comparable at 8.4% or could reduce UCU to 6.3% (287/4553) while keeping IAT equal. IAT and UCU in all 3GC-R-GNIs (analysis 2) improved at similar percentages. 1683 HO infection episodes were included and the prevalence of 3GC-R-BSI was 4.9% (n = 83). Here model calibration was insufficient. Conclusions A prediction rule for CO 3GC-R infection was validated in an international cohort and could improve empirical antibiotic use. Validation of the HO rule yielded suboptimal performance

    Combating pan-coronavirus infection by indomethacin through simultaneously inhibiting viral replication and inflammatory response

    Get PDF
    Severe infections with coronaviruses are often accompanied with hyperinflammation, requiring therapeutic strategies to simultaneously tackle the virus and inflammation. By screening a safe-in-human broad-spectrum antiviral agents library, we identified that indomethacin can inhibit pan-coronavirus infection in human cell and airway organoids models. Combining indomethacin with oral antiviral drugs authorized for treating COVID-19 results in synergistic anti-coronavirus activity. Coincidentally, screening a library of FDA-approved drugs identified indomethacin as the most potent potentiator of interferon response through increasing STAT1 phosphorylation. Combining indomethacin with interferon-alpha exerted synergistic antiviral effects against multiple coronaviruses. The anti-coronavirus activity of indomethacin is associated with activating interferon response. In a co-culture system of lung epithelial cells with macrophages, indomethacin inhibited both viral replication and inflammatory response. Collectively, indomethacin is a pan-coronavirus inhibitor that can simultaneously inhibit virus-triggered inflammatory response. The therapeutic potential of indomethacin can be further augmented by combining it with oral antiviral drugs or interferon-alpha.</p

    Mouse model for the lysosomal disorder galactosialidosis and correction of the phenotype with overexpressing erythroid precursor cells

    Get PDF
    The lysosomal storage disorder galactosialidosis results from a primary deficiency of the protective protein/cathepsin A (PPCA), which in turn affects the activities of β-galactosidase and neuraminidase. Mice homozygous for a null mutation at the PPCA locus present with signs of the disease shortly after birth and develop a phenotype closely resembling human patients with galactosialidosis. Most of their tissues show characteristic vacuolation of specific cells, attributable to lysosomal storage. Excessive excretion of sialyloligosaccharides in urine is diagnostic of the disease. Affected mice progressively deteriorate as a consequence of severe organ dysfunction, especially of the kidney. The deficient phenotype can be corrected by transplanting null mutants with bone marrow from a transgenic line overexpressing human PPCA in erythroid precursor cells. The transgenic bone marrow gives a more efficient and complete correction of the visceral organs than normal bone marrow. Our data demonstrate the usefulness of this animal model, very similar to the human disease, for experimenting therapeutic strategies aimed to deliver the functional protein or gene to affected organs. Furthermore, they suggest the feasibility of gene therapy for galactosialidosis and other disorders, using bone marrow cells engineered to overexpress and secrete the correcting lysosomal protein.</p

    Mouse model for the lysosomal disorder galactosialidosis and correction of the phenotype with overexpressing erythroid precursor cells

    Get PDF
    The lysosomal storage disorder galactosialidosis results from a primary deficiency of the protective protein/cathepsin A (PPCA), which in turn affects the activities of β-galactosidase and neuraminidase. Mice homozygous for a null mutation at the PPCA locus present with signs of the disease shortly after birth and develop a phenotype closely resembling human patients with galactosialidosis. Most of their tissues show characteristic vacuolation of specific cells, attributable to lysosomal storage. Excessive excretion of sialyloligosaccharides in urine is diagnostic of the disease. Affected mice progressively deteriorate as a consequence of severe organ dysfunction, especially of the kidney. The deficient phenotype can be corrected by transplanting null mutants with bone marrow from a transgenic line overexpressing human PPCA in erythroid precursor cells. The transgenic bone marrow gives a more efficient and complete correction of the visceral organs than normal bone marrow. Our data demonstrate the usefulness of this animal model, very similar to the human disease, for experimenting therapeutic strategies aimed to deliver the functional protein or gene to affected organs. Furthermore, they suggest the feasibility of gene therapy for galactosialidosis and other disorders, using bone marrow cells engineered to overexpress and secrete the correcting lysosomal protein.</p

    In vitro modelling of alveolar repair at the air-liquid interface using alveolar epithelial cells derived from human induced pluripotent stem cells

    Get PDF
    Research on acute and chronic lung diseases would greatly benefit from reproducible availability of alveolar epithelial cells (AEC). Primary alveolar epithelial cells can be derived from human lung tissue but the quality of these cells is highly donor dependent. Here, we demonstrated that culture of EpCAM+ cells derived from human induced pluripotent stem cells (hiPSC) at the physiological air-liquid interface (ALI) resulted in type 2 AEC-like cells (iAEC2) with alveolar characteristics. iAEC2 cells expressed native AEC2 markers (surfactant proteins and LPCAT-1) and contained lamellar bodies. ALI-iAEC2 were used to study alveolar repair over a period of 2 weeks following mechanical wounding of the cultures and the responses were compared with those obtained using primary AEC2 (pAEC2) isolated from resected lung tissue. Addition of the Wnt/β-catenin activator CHIR99021 reduced wound closure in the iAEC2 cultures but not pAEC2 cultures. This was accompanied by decreased surfactant protein expression and accumulation of podoplanin-positive cells at the wound edge. These results demonstrated the feasibility of studying alveolar repair using hiPSC-AEC2 cultured at the ALI and indicated that this model can be used in the future to study modulation of alveolar repair by (pharmaceutical) compounds

    An International Prospective Cohort Study To Validate 2 Prediction Rules for Infections Caused by Third-generation Cephalosporin-resistant Enterobacterales

    Get PDF
    [Background] The possibility of bloodstream infections caused by third-generation cephalosporin-resistant Enterobacterales (3GC-R-BSI) leads to a trade-off between empiric inappropriate treatment (IAT) and unnecessary carbapenem use (UCU). Accurately predicting 3GC-R-BSI could reduce IAT and UCU. We externally validate 2 previously derived prediction rules for community-onset (CO) and hospital-onset (HO) suspected bloodstream infections.[Methods] In 33 hospitals in 13 countries we prospectively enrolled 200 patients per hospital in whom blood cultures were obtained and intravenous antibiotics with coverage for Enterobacterales were empirically started. Cases were defined as 3GC-R-BSI or 3GC-R gram-negative infection (3GC-R-GNI) (analysis 2); all other outcomes served as a comparator. Model discrimination and calibration were assessed. Impact on carbapenem use was assessed at several cutoff points.[Results] 4650 CO infection episodes were included and the prevalence of 3GC-R-BSI was 2.1% (n = 97). IAT occurred in 69 of 97 (71.1%) 3GC-R-BSI and UCU in 398 of 4553 non–3GC-R-BSI patients (8.7%). Model calibration was good, and the AUC was .79 (95% CI, .75–.83) for 3GC-R-BSI. The prediction rule potentially reduced IAT to 62% (60/97) while keeping UCU comparable at 8.4% or could reduce UCU to 6.3% (287/4553) while keeping IAT equal. IAT and UCU in all 3GC-R-GNIs (analysis 2) improved at similar percentages. 1683 HO infection episodes were included and the prevalence of 3GC-R-BSI was 4.9% (n = 83). Here model calibration was insufficient.[Conclusions] A prediction rule for CO 3GC-R infection was validated in an international cohort and could improve empirical antibiotic use. Validation of the HO rule yielded suboptimal performance.J. R.-B. receives funds for research from Plan Nacional de I+D+i 2013–2016 and Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Ciencia, Innovación y Universidades, Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0001), co-financed by the European Development Regional Fund “A Way to Achieve Europe,” Operative Program Intelligent Growth 2014-2020.Peer reviewe

    The Deep‐water corals of Cyprus: Environmental settings and ecological features (CYprus Cold‐corals Levantine SeA, Eastern MEditerraneaN: CYCLAMEN)

    Get PDF
    The recently started research project CYCLAMEN (CYprus Cold-corals Levantine SeA, Eastern MEditerraneaN), will conduct the first detailed study of cold-water coral communities in eastern Cypriot waters. Cold-water coral habitats have been found during exploratory surveys. The 2-yr long project will include the environmental characterization of the area, as well as the study of the spatial distribution of cold-water coral communities. In addition to the study of the biology of the coral species, genetic and eco-physiological studies will be included. This project is the first of its kind in Cyprus and will additionally have an associated scientific outreach programme in order to bring these ecosystems, still poorly known, to the general public. The project is led by the Spanish Institute of Oceanography (IEO), and relies on the participation of research Institutions in Cyprus: The Cyprus Institute (CyI) and the NGO Enalia Physis Environmental Research Centre (EPERC); France: Aix-Marseille University – Mediterranean Institute for Biodiversity & Ecology (AMU-IMBE); Greece: The Hellenic Centre for Marine Research (HCMR); Mónaco: Centre Scientifique de Monaco (CSM); United Kingdom: National Oceanography Centre (NOC), and Spain: Universitat de Barcelona (UB). Here we present the conceptual frame of the project, the background knowledge and the first obtained results in the oceanographic cruise carried out in summer 2015

    The long-term safety of chronic azithromycin use in adult patients with cystic fibrosis, evaluating biomarkers for renal function, hepatic function and electrical properties of the heart

    Get PDF
    Background: Azithromycin maintenance therapy is widely used in cystic fibrosis (CF), but little is known about its long-term safety. We investigated whether chronic azithromycin use is safe regarding renal function, hepatic cell toxicity and QTc-interval prolongation. Methods: Adult CF patients (72 patients using azithromycin for a cumulative period of 364.8 years and 19 controls, 108.8 years) from two CF-centers in the Netherlands with azithromycin (non)-use for at least three uninterrupted years were studied retrospectively. Results: There was no difference in mean decline of estimated glomerular filtration rate (eGFR), nor in occurrence of eGFR-events. No drug-induced liver injury could be attributed to azithromycin. Of the 39 azithromycin users of whom an ECG was available, 4/39 (10.3%) had borderline and 4/39 (10.3%) prolonged QTc-intervals, with 7/8 patients using other QTc-prolonging medication. Of the control patients 1/6 (16.7%) had a borderline QTc-interval, without using other QTc-prolonging medication. No cardiac arrhythmias were observed. Conclusion: We observed no renal or hepatic toxicity, nor cardiac arrythmias during azithromycin use in CF patients for a mean study duration of more than 5 years. One should be aware of possible QTc-interval prolongation, in particular in patients using other QTc-interval prolonging medication
    corecore