58 research outputs found

    8-Cl-cAMP antagonizes mitogen-activated protein kinase activation and cell growth stimulation induced by epidermal growth factor

    Get PDF
    The growth factor-activated mitogenic pathways are often disregulated in tumour cells and, therefore, they can provide specific molecular targets for novel anti-tumour approaches. 8-Chloro-cAMP (8-Cl-cAMP), a synthetic cAMP analogue, is a novel anti-tumour agent that has recently undergone clinical evaluation. We investigated the effects of 8-CI-cAMP on the epidermal growth factor (EGF)/EGF receptor (EGF-R) signalling in human epidermoid cancer KB cells, which are responsive to the mitogenic stimulus of EGF. We found that the growth-promoting activity of EGF was completely abolished when EGF treatment was performed in combination with 8-CI-cAMP. The inhibition of the EGF-induced proliferation by 8-CI-cAMP was paralleled by the blockade of the EGF-stimulated activation of mitogen-activated protein kinases (MAPK), ERK-1 and ERK-2. Conversely, we found an increase of EGF-R expression and EGF-R tyrosine phosphorylation when KB cells were growth inhibited by 8-Cl-cAMP. Moreover, the activity of Raf-1 and MEK-1 protein kinases, the activators upstream MAPK in the phosphorylation cascade induced by EGF, was not modified in 8-Cl-cAMP-treated cells. We concluded that the impairment of KB cell response to EGF, induced by 8-Cl-cAMP, resides in the specific inhibition of MAPK/ERKs activity while the function of the upstream elements in the EGF-R signalling is preserved. © 1999 Cancer Research Campaig

    The proteome of neural stem cells from adult rat hippocampus

    Get PDF
    BACKGROUND: Hippocampal neural stem cells (HNSC) play an important role in cerebral plasticity in the adult brain and may contribute to tissue repair in neurological disease. To describe their biological potential with regard to plasticity, proliferation, or differentiation, it is important to know the cellular composition of their proteins, subsumed by the term proteome. RESULTS: Here, we present for the first time a proteomic database for HNSC isolated from the brains of adult rats and cultured for 10 weeks. Cytosolic proteins were extracted and subjected to two-dimensional gel electrophoresis followed by protein identification through mass spectrometry, database search, and gel matching. We could map about 1141 ± 209 (N = 5) protein spots for each gel, of which 266 could be identified. We could group the identified proteins into several functional categories including metabolism, protein folding, energy metabolism and cellular respiration, as well as cytoskeleton, Ca(2+ )signaling pathways, cell cycle regulation, proteasome and protein degradation. We also found proteins belonging to detoxification, neurotransmitter metabolism, intracellular signaling pathways, and regulation of DNA transcription and RNA processing. CONCLUSIONS: The HNSC proteome database is a useful inventory which will allow to specify changes in the cellular protein expression pattern due to specific activated or suppressed pathways during differentiation or proliferation of neural stem cells. Several proteins could be identified in the HNSC proteome which are related to differentiation and plasticity, indicating activated functional pathways. Moreover, we found a protein for which no expression has been described in brain cells before

    Induction of MDR1 gene expression by anthracycline analogues in a human drug resistant leukaemia cell line

    Get PDF
    The effects of 4-demethoxydaunorubicin (idarubicin, IDA) and MX2, a new morpholino-anthracycline, on up-regulation of the MDR1 gene in the low-level multidrug resistant (MDR) cell line CEM/A7R were compared at similar concentrations (IC10, IC50and IC90) over a short time exposure (4 and 24 h). The chemosensitivity of each drug was determined by a 3-day cell growth inhibition assay. Compared with epirubicin (EPI), IDA and MX2 were 17- and eightfold more effective in the CEM/A7R line respectively. No cross-resistance to 5-FU was seen in the CEM/A7R line. Verapamil (5 μM) and PSC 833 (1 μM), which dramatically reversed resistance to EPI in the CEM/A7R line, had no sensitizing effect on the resistance of this line to MX2, but slightly decreased resistance to IDA. The sensitivity to 5-FU was unchanged by these modulators. The induction of MDR1 mRNA expression by IDA, MX2 and 5-FU was analysed by Northern blotting and semiquantitatively assessed by scanning Northern blots on a phosphorimager. The relative level of MDR1 expression was expressed as a ratio of MDR1 mRNA to the internal RNA control glyceraldehyde-3-phosphate dehydrogenase (GAPDH). IDA, MX2 and 5-FU differentially up-regulated MDR1 mRNA in the CEM/A7R line in a dose-dependent manner. Both IDA and MX2 induced MDR1 expression within 4 h. 5-FU up-regulated MDR1 expression only when drug exposure was prolonged to 24 h. Based on MRK 16 binding, flow cytometric analysis of P-glycoprotein (Pgp) expression paralleled the increase in MDR1 mRNA levels. For the three anthracyclines, the increase in MDR1 expression was stable in cells grown in the absence of drug for more than 3 weeks after drug treatment. The induction of MDR1 expression by 5-FU was transient, associated with a rapid decrease in the increased Pgp levels which returned to baseline 72 h after the removal of 5-FU. This study demonstrates that MDR1 expression can be induced by analogues of anthracyclies not pumped by Pgp, and that this induction appears to be stable despite a 3-week drug-free period. © 1999 Cancer Research Campaig

    Identification of novel biomarker candidates by proteomic analysis of cerebrospinal fluid from patients with moyamoya disease using SELDI-TOF-MS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Moyamoya disease (MMD) is an uncommon cerebrovascular condition with unknown etiology characterized by slowly progressive stenosis or occlusion of the bilateral internal carotid arteries associated with an abnormal vascular network. MMD is a major cause of stroke, specifically in the younger population. Diagnosis is based on only radiological features as no other clinical data are available. The purpose of this study was to identify novel biomarker candidate proteins differentially expressed in the cerebrospinal fluid (CSF) of patients with MMD using proteomic analysis.</p> <p>Methods</p> <p>For detection of biomarkers, CSF samples were obtained from 20 patients with MMD and 12 control patients. Mass spectral data were generated by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) with an anion exchange chip in three different buffer conditions. After expression difference mapping was undertaken using the obtained protein profiles, a comparative analysis was performed.</p> <p>Results</p> <p>A statistically significant number of proteins (34) were recognized as single biomarker candidate proteins which were differentially detected in the CSF of patients with MMD, compared to the control patients (p < 0.05). All peak intensity profiles of the biomarker candidates underwent classification and regression tree (CART) analysis to produce prediction models. Two important biomarkers could successfully classify the patients with MMD and control patients.</p> <p>Conclusions</p> <p>In this study, several novel biomarker candidate proteins differentially expressed in the CSF of patients with MMD were identified by a recently developed proteomic approach. This is a pilot study of CSF proteomics for MMD using SELDI technology. These biomarker candidates have the potential to shed light on the underlying pathogenesis of MMD.</p

    Proteomics: a major new technology for the drug discovery process.

    No full text
    Proteomics is a new enabling technology that is being integrated into the drug discovery process. This will facilitate the systematic analysis of proteins across any biological system or disease, forwarding new targets and information on mode of action, toxicology and surrogate markers. Proteomics is highly complementary to genomic approaches in the drug discovery process and, for the first time, offers scientists the ability to integrate information from the genome, expressed mRNAs, their respective proteins and subcellular localization. It is expected that this will lead to important new insights into disease mechanisms and improved drug discovery strategies to produce novel therapeutics

    Proteomics: a major new technology for the drug discovery process.

    No full text
    Proteomics is a new enabling technology that is being integrated into the drug discovery process. This will facilitate the systematic analysis of proteins across any biological system or disease, forwarding new targets and information on mode of action, toxicology and surrogate markers. Proteomics is highly complementary to genomic approaches in the drug discovery process and, for the first time, offers scientists the ability to integrate information from the genome, expressed mRNAs, their respective proteins and subcellular localization. It is expected that this will lead to important new insights into disease mechanisms and improved drug discovery strategies to produce novel therapeutics

    Retroviral vector-mediated overexpression of the RIIbeta subunit of the cAMP-dependent protein kinase induces differentiation in human leukemia cells and reverts the transformed phenotype of mouse fibroblasts.

    No full text
    We have recently shown, using antisense strategy, that the RII beta regulatory subunit of cAMP-dependent protein kinase is essential for cAMP-induced growth inhibition and differentiation of HL-60 human leukemia cells. We constructed a retroviral vector for RII beta (MT-RII beta) by inserting human RII beta complementary DNA into the OT1521 retroviral vector plasmid that contains an internal mouse metallothionein-1 promoter and a neomycin resistance gene. The PA317 packaging cell line was then transfected with MT-RII beta plasmid to produce the amphotrophic stock of MT-RII beta retroviral vector. The infection with MT-RII beta and treatment with CdCl2 brought about growth arrest in HL-60 human leukemia and Ki-ras-transformed NIH 3T3 clone DT cells in monolayer culture with no sign of toxicity. The growth inhibition correlated with the expression of RII beta and accompanied changes in cell morphology; cells became flat, exhibiting enlarged cytoplasm. The growth of these cells in semisolid medium (anchorage-independent growth) was almost completely suppressed. In contrast, overexpression of the RI alpha subunit of protein kinase enhanced the cell proliferation in DT cells. The MT-RII beta-infected cells exhibited an increased sensitivity toward treatment with cAMP analogues, such as 8-Cl-cAMP and N6-benzyl-cAMP, as compared with the parental noninfected cells. In MT-RII beta HL-60 cells, N6-benzyl-cAMP treatment greatly enhanced the expression of monocytic surface markers. These results suggest that the RII beta cAMP receptor, by binding to its ligand, cAMP, acts as a tumor suppressor protein exerting growth inhibition, differentiation, and reverse transformation

    Retroviral vector-mediated overexpression of the RIIbeta subunit of the cAMP-dependent protein kinase induces differentiation in human leukemia cells and reverts the transformed phenotype of mouse fibroblasts.

    No full text
    • …
    corecore