2,386 research outputs found

    Large negative magnetoresistance in a ferromagnetic shape memory alloy : Ni_{2+x}Mn_{1-x}Ga

    Full text link
    5% negative magnetoresistance (MR) at room temperature has been observed in bulk Ni_{2+x}Mn_{1-x}Ga. This indicates the possibility of using Ni_{2+x}Mn_{1-x}Ga as magnetic sensors. We have measured MR in the ferromagnetic state for different compositions (x=0-0.2) in the austenitic, pre-martensitic and martensitic phases. MR is found to increase with x. While MR for x=0 varies almost linearly in the austenitic and pre-martensitic phases, in the martensitic phase it shows a cusp-like shape. This has been explained by the changes in twin and domain structures in the martensitic phase. In the austenitic phase, which does not have twin structure, MR agrees with theory based on s-d scattering model.Comment: 3 pages, 3 figures, Appl. Phys. Lett 86, 202508 (2005

    Premartensite to martensite transition and its implications on the origin of modulation in Ni2MnGa ferromagnetic shape memory alloy

    Full text link
    We present here results of temperature dependent high resolution synchrotron x-ray powder diffraction study of sequence of phase transitions in Ni2MnGa. Our results show that the incommensurate martensite phase results from the incommensurate premartensite phase, and not from the austenite phase assumed in the adaptive phase model. The premartensite phase transforms to the martensite phase through a first order phase transition with coexistence of the two phases in a broad temperature interval (~40K), discontinuous change in the unit cell volume as also in the modulation wave vector across the transition temperature and considerable thermal hysteresis in the characteristic transition temperatures. The temperature variation of the modulation wave vector q shows smooth analytic behaviour with no evidence for any devilish plateau corresponding to an intermediate or ground state commensurate lock-in phases. The existence of the incommensurate 7M like modulated structure down to 5K suggests that the incommensurate 7M like modulation is the ground state of Ni2MnGa and not the Bain distorted tetragonal L10 phase or any other lock-in phase with a commensurate modulation. These findings can be explained within the framework of the soft phonon model

    Influence of Ni doping on the electronic structure of Ni_2MnGa

    Full text link
    The modifications in the electronic structure of Ni_{2+x}Mn_{1-x}Ga by Ni doping have been studied using full potential linearized augmented plane wave method and ultra-violet photoemission spectroscopy. Ni 3d related electron states appear due to formation of Ni clusters. We show the possibility of changing the minority-spin DOS with Ni doping, while the majority-spin DOS remains almost unchanged. The total magnetic moment decreases with excess Ni. The total energy calculations corroborate the experimentally reported changes in the Curie temperature and the martensitic transition temperature with x.Comment: 4 pages, 4 figures, accepted in Phys. Rev.

    Transport and Spectra in the Half-filled Hubbard Model: A Dynamical Mean Field Study

    Full text link
    We study the issues of scaling and universality in spectral and transport properties of the infinite dimensional particle--hole symmetric (half-filled) Hubbard model within dynamical mean field theory. One of the simplest and extensively used impurity solvers, namely the iterated perturbation theory approach is reformulated to avoid problems such as analytic continuation of Matsubara frequency quantities or calculating multi-dimensional integrals, while taking full account of the very sharp structures in the Green's functions that arise close to the Mott transitions and in the Mott insulator regime. We demonstrate its viability for the half-filled Hubbard model. Previous known results are reproduced within the present approach. The universal behavior of the spectral functions in the Fermi liquid regime is emphasized, and adiabatic continuity to the non-interacting limit is demonstrated. The dc resistivity in the metallic regime is known to be a non-monotonic function of temperature with a `coherence peak'. This feature is shown to be a universal feature occurring at a temperature roughly equal to the low energy scale of the system. A comparison to pressure dependent dc resistivity experiments on Selenium doped NiS2_2 yields qualitatively good agreement. Resistivity hysteresis across the Mott transition is shown to be described qualitatively within the present framework. A direct comparison of the thermal hysteresis observed in V2_2O3_3 with our theoretical results yields a value of the hopping integral, which we find to be in the range estimated through first-principle methods. Finally, a systematic study of optical conductivity is carried out and the changes in absorption as a result of varying interaction strength and temperature are identified.Comment: 19 pages, 12 figure

    Direct Imaging of Multiple Planets Orbiting the Star HR 8799

    Full text link
    Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step towards imaging Earth-like planets. Imaging detections are challenging due to the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter-clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our Solar System.Comment: 30 pages, 5 figures, Research Article published online in Science Express Nov 13th, 200

    Astrometric Monitoring of the HR 8799 Planets: Orbit Constraints from Self-Consistent Measurements

    Full text link
    We present new astrometric measurements from our ongoing monitoring campaign of the HR 8799 directly imaged planetary system. These new data points were obtained with NIRC2 on the W.M. Keck II 10 meter telescope between 2009 and 2014. In addition, we present updated astrometry from previously published observations in 2007 and 2008. All data were reduced using the SOSIE algorithm, which accounts for systematic biases present in previously published observations. This allows us to construct a self-consistent data set derived entirely from NIRC2 data alone. From this dataset, we detect acceleration for two of the planets (HR 8799b and e) at >>3σ\sigma. We also assess possible orbital parameters for each of the four planets independently. We find no statistically significant difference in the allowed inclinations of the planets. Fitting the astrometry while forcing coplanarity also returns χ2\chi^2 consistent to within 1σ\sigma of the best fit values, suggesting that if inclination offsets of ≲\lesssim20o^{o} are present, they are not detectable with current data. Our orbital fits also favor low eccentricities, consistent with predictions from dynamical modeling. We also find period distributions consistent to within 1σ\sigma with a 1:2:4:8 resonance between all planets. This analysis demonstrates the importance of minimizing astrometric systematics when fitting for solutions to highly undersampled orbits.Comment: 18 pages, 11 figures. Accepted for publication in A

    Residual stress induced stabilization of martensite phase and its effect on the magneto-structural transition in Mn rich Ni-Mn-In/Ga magnetic shape memory alloys

    Full text link
    The irreversibility of the martensite transition in magnetic shape memory alloys (MSMAs) with respect to external magnetic field is one of the biggest challenges that limits their application as giant caloric materials. This transition is a magneto-structural transition that is accompanied with a steep drop in magnetization (i.e., 'delta M') around the martensite start temperature (Ms) due to the lower magnetization of the martensite phase. In this communication, we show that 'delta M' around Ms in Mn rich Ni-Mn based MSMAs gets suppressed by two orders of magnitude in crushed powders due to the stabilization of the martensite phase at temperatures well above the Ms and the austenite finish (Af) temperatures due to residual stresses. Analysis of the intensities and the FWHM of the x-ray powder diffraction patterns reveals stabilized martensite phase fractions as 97, 75 and 90% with corresponding residual microstrains as 5.4, 5.6 and 3% in crushed powders of the three different Mn rich Ni-Mn alloys, namely, Mn1.8Ni1.8In0.4, Mn1.75Ni1.25Ga and Mn1.9Ni1.1Ga, respectively. Even after annealing at 773 K, the residual stress stabilised martensite phase does not fully revert to the equilibrium cubic austenite phase as the magneto-structural transition is only partially restored with reduced value of 'delta M'. Our results have very significant bearing on application of such alloys as inverse magnetocaloric and barocaloric materials

    HAZMAT VI: The Evolution of Extreme Ultraviolet Radiation Emitted from Early M Star

    Full text link
    Quantifying the evolution of stellar extreme ultraviolet (EUV, 100 -- 1000 A∘\overset{\circ}{A}) emission is critical for assessing the evolution of planetary atmospheres and the habitability of M dwarf systems. Previous studies from the HAbitable Zones and M dwarf Activity across Time (HAZMAT) program showed the far- and near-UV (FUV, NUV) emission from M stars at various stages of a stellar lifetime through photometric measurements from the Galaxy Evolution Explorer (GALEX). The results revealed increased levels of short-wavelength emission that remain elevated for hundreds of millions of years. The trend for EUV flux as a function of age could not be determined empirically because absorption by the interstellar medium prevents access to the EUV wavelengths for the vast majority of stars. In this paper, we model the evolution of EUV flux from early M stars to address this observational gap. We present synthetic spectra spanning EUV to infrared wavelengths of 0.4 ±\pm 0.05 M⊙_{\odot} stars at five distinct ages between 10 and 5000 Myr, computed with the PHOENIX atmosphere code and guided by the GALEX photometry. We model a range of EUV fluxes spanning two orders of magnitude, consistent with the observed spread in X-ray, FUV, and NUV flux at each epoch. Our results show that the stellar EUV emission from young M stars is 100 times stronger than field age M stars, and decreases as t−1^{-1} after remaining constant for a few hundred million years. This decline stems from changes in the chromospheric temperature structure, which steadily shifts outward with time. Our models reconstruct the full spectrally and temporally resolved history of an M star's UV radiation, including the unobservable EUV radiation, which drives planetary atmospheric escape, directly impacting a planet's potential for habitability.Comment: 23 pages, 15 figures, accepted to Ap

    Role of availability of critical aquaculture inputs and community-managed markets on community-based floodplain wetland management

    Get PDF
    India has extensive wetlands of 2.02 lakh ha. These are basically low-lying floodplain areas. Assam has endowed huge floodplain wetlands and are locally called as Beel. These are one of the most important fishery resources of India providing livelihood to thousands of poor people. The average existing fish production of Assam Beel is only 173 kg/ha/year against its production potential of 1000-1500 kg/ ha/year. A study was conducted in three Beels of the Assam state to see the role of two situational independent variables namely availability of critical aquaculture inputs (X1) and community-managed markets (X2) on dependent variable i.e. knowledge levels of Beel users for community-based Beel fisheries management (Y). The study revealed that community-managed markets was significantly and positively associated (P<0.01) with knowledge levels of Beel users on community-based Beel fisheries management. Also, between these two variables, community managed market (X2) was found to be most significantly contributing variable (‘t’-value – 2.91**) on knowledge levels of Beel users for community-based Beel fisheries management (Y)
    • …
    corecore