500 research outputs found

    Final report on phase 1 of contract NAS12-140, DSR 55-27600

    Get PDF
    Computer aided design facility to aid designers in product development and systems engineerin

    Hands-On Universe: A Global Program for Education and Public Outreach in Astronomy

    Get PDF
    Hands-On Universe (HOU) is an educational program that enables students to investigate the Universe while applying tools and concepts from science, math, and technology. Using the Internet, HOU participants around the world request observations from an automated telescope, download images from a large image archive, and analyze them with the aid of user-friendly image processing software. This program is developing now in many countries, including the USA, France, Germany, Sweden, Japan, Australia, and others. A network of telescopes has been established among these countries, many of them remotely operated, as shown in the accompanying demo. Using this feature, students in the classroom are able to make night observations during the day, using a telescope placed in another country. An archive of images taken on large telescopes is also accessible, as well as resources for teachers. Students are also dealing with real research projects, e.g. the search for asteroids, which resulted in the discovery of a Kuiper Belt object by high-school students. Not only Hands-On Universe gives the general public an access to professional astronomy, but it is also a more general tool to demonstrate the use of a complex automated system, the techniques of data processing and automation. Last but not least, through the use of telescopes located in many countries over the globe, a form of powerful and genuine cooperation between teachers and children from various countries is promoted, with a clear educational goal.Comment: 4 pages, 1 figure, to appear in the proceedings of the ADASS X conference, Boston, October 2000, ASP conf. pro

    Hands-On TAROT: Intercontinental use of the TAROT for Education and Public Outreach

    Get PDF
    The TAROT telescope has for primary goal the search for the prompt optical counterpart of Cosmic Gamma-Ray Bursts. It is a completely autonomous 25cm telescope installed near Nice (France), able to point any location of the sky within 1-2 seconds. The control, scheduling, and data processing activities are completely automated, so the instrument is completely autonomous. In addition to its un-manned modes, we added recently the possibility to remotely control the telescope, as a request of the "Hands-On Universe" (HOU) program for exchange of time within automatic telescopes for the education and public outreach. To this purpose we developed a simple control interface. A webcam was installed to visualize the telescope. Access to the data is possible through a web interface. The images can be processed by the HOU software, a program specially suited for use within the classroom. We experienced these feature during the open days of the University of California Berkeley and the Astronomy Festival of Fleurance (France). We plan a regular use for an astronomy course of the Museum of Tokyo, as well as for French schools. Not only does Hands-On TAROT gives the general public an access to professional astronomy, but it is also a more general tool to demonstrate the use of a complex automated system, the techniques of data processing and automation. Last but not least, through the use of telescopes located in many countries over the globe, a form of powerful and genuine cooperation between teachers and children from various countries is promoted, with a clear educational goal.Comment: 4 pages, Based on a demonstration presented at the ADASS X Conference, Boston, MA, USA, October 2000, to appear in ASP Conf. Serie

    Infrared to Ultraviolet Wavelength-Dependent Variations Within the Pulse Profile Peaks of the Crab Nebula Pulsar

    Get PDF
    We present evidence of wavelength-dependent variations within the infrared, optical, and ultraviolet pulse profile peaks of the Crab Nebula pulsar. The leading and trailing edge half-width half-maxima of the peaks display clear differences in their wavelength dependences. In addition, phase-resolved infrared-to-ultraviolet color spectra show significant variations from the leading to trailing edges of the peaks. The color variations between the leading and trailing edges remain significant over phase differences smaller than 0.0054, corresponding to timescales of <180μ<180 \mus. These results are not predicted by any current models of the pulsar emission mechanism and offer new challenges for the development of such models.Comment: 12 pages, 4 figure

    K Corrections For Type Ia Supernovae and a Test for Spatial Variation of the Hubble Constant

    Get PDF
    Cross-filter K corrections for a sample of "normal" Type Ia supernovae (SNe) have been calculated for a range of epochs. With appropriate filter choices, the combined statistical and systematic K correction dispersion of the full sample lies within 0.05 mag for redshifts z<0.7. This narrow dispersion of the calculated K correction allows the Type Ia to be used as a cosmological probe. We use the K corrections with observations of seven SNe at redshifts 0.3 < z <0.5 to bound the possible difference between the locally measured Hubble constant (H_L) and the true cosmological Hubble constant (H_0).Comment: 6 pages, 3 Postscript figures, uuencoded uses crckapb.sty and psfig.sty. To appear in Thermonuclear Supernovae (NATO ASI), eds. R. Canal, P. Ruiz-LaPuente, and J. Isern. Postscript version is also available at http://www-supernova.lbl.gov

    The PLATO Dome A Site-Testing Observatory : instrumentation and first results

    Get PDF
    The PLATeau Observatory (PLATO) is an automated self-powered astrophysical observatory that was deployed to Dome A, the highest point on the Antarctic plateau, in 2008 January. PLATO consists of a suite of site-testing instruments designed to quantify the benefits of the Dome A site for astronomy, and science instruments designed to take advantage of the unique observing conditions. Instruments include CSTAR, an array of optical telescopes for transient astronomy; Gattini, an instrument to measure the optical sky brightness and cloud cover statistics; DASLE, an experiment to measure the statistics of the meteorological conditions within the near-surface layer; Pre-HEAT, a submillimeter tipping radiometer measuring the atmospheric transmission and water vapor content and performing spectral line imaging of the Galactic plane; and Snodar, an acoustic radar designed to measure turbulence within the near-surface layer. PLATO has run completely unattended and collected data throughout the winter 2008 season. Here we present a detailed description of the PLATO instrument suite and preliminary results obtained from the first season of operation

    Cosmology from Type Ia Supernovae

    Get PDF
    This presentation reports on first evidence for a low-mass-density/positive-cosmological-constant universe that will expand forever, based on observations of a set of 40 high-redshift supernovae. The experimental strategy, data sets, and analysis techniques are described. More extensive analyses of these results with some additional methods and data are presented in the more recent LBNL report #41801 (Perlmutter et al., 1998; accepted for publication in Ap.J.), astro-ph/9812133 . This Lawrence Berkeley National Laboratory reprint is a reduction of a poster presentation from the Cosmology Display Session #85 on 9 January 1998 at the American Astronomical Society meeting in Washington D.C. It is also available on the World Wide Web at http://supernova.LBL.gov/ This work has also been referenced in the literature by the pre-meeting abstract citation: Perlmutter et al., B.A.A.S., volume 29, page 1351 (1997).Comment: 9 pages, 8 color figs. Presented at Jan '98 AAS Meeting, also cited as BAAS,29,1351(1997). Archived here in response to requests; see more extensive analyses in ApJ paper (astro-ph/9812133

    The sky brightness and transparency in i-band at Dome A, Antarctica

    Full text link
    The i-band observing conditions at Dome A on the Antarctic plateau have been investigated using data acquired during 2008 with the Chinese Small Telescope ARray. The sky brightness, variations in atmospheric transparency, cloud cover, and the presence of aurorae are obtained from these images. The median sky brightness of moonless clear nights is 20.5 mag arcsec^{-2} in the SDSS ii band at the South Celestial Pole (which includes a contribution of about 0.06 mag from diffuse Galactic light). The median over all Moon phases in the Antarctic winter is about 19.8 mag arcsec^{-2}. There were no thick clouds in 2008. We model contributions of the Sun and the Moon to the sky background to obtain the relationship between the sky brightness and transparency. Aurorae are identified by comparing the observed sky brightness to the sky brightness expected from this model. About 2% of the images are affected by relatively strong aurorae.Comment: There are 1 Latex file and 14 figures accepted by A

    Implications For The Hubble Constant from the First Seven Supernovae at z >= 0.35

    Get PDF
    The Supernova Cosmology Project has discovered over twenty-eight supernovae (SNe) at 0.35 <z < 0.65 in an ongoing program that uses Type Ia SNe as high-redshift distance indicators. Here we present measurements of the ratio between the locally observed and global Hubble constants, H_0^L/H_0^G, based on the first 7 SNe of this high-redshift data set compared with 18 SNe at z <= 0.1 from the Calan/Tololo survey. If Omega_M <= 1, then light-curve-width corrected SN magnitudes yield H_0^L/H_0^G < 1.10 (95% confidence level) in both a Lambda=0 and a flat universe. The analysis using the SNe Ia as standard candles without a light-curve-width correction yields similar results. These results rule out the hypothesis that the discrepant ages of the Universe derived from globular clusters and recent measurements of the Hubble constant are attributable to a locally underdense bubble. Using the Cepheid-distance-calibrated absolute magnitudes for SNe Ia of Sandage (1996}, we can also measure the global Hubble constant, H_0^G. If Omega_M >= 0.2, we find that H_0^G < 70 km/s/Mpc in a Lambda=0 universe and H_0^G < 78 km/s/Mpc in a flat universe, correcting the distant and local SN apparent magnitudes for light curve width. Lower results for H_0^G are obtained if the magnitudes are not width corrected.Comment: 13 pages, 2 Postscript figures. Preprint also available at http://www-supernova.lbl.gov . To appear in ApJ Letter

    Nurses\u27 Alumnae Association Bulletin, June 1969

    Get PDF
    Alumnae President\u27s Message Officers and Chairmen Financial Report Progressive Changes at Jefferson School of Nursing Report Student Activities School of Practical Nursing Report Jefferson Expansion Report Clerk-Typist Report Committee Reports Resume of Alumnae Meetings Class News 1969 CLINIC Correspondence Notice
    corecore