2 research outputs found

    Positional Disorder, Spin-Orbit Coupling and Frustration in GaMnAs

    Full text link
    We study the magnetic properties of metallic GaMnAs. We calculate the effective RKKY interaction between Mn spins using several realistic models for the valence band structure of GaAs. We also study the effect of positional disorder of the Mn on the magnetic properties. We find that the interaction between two Mn spins is anisotropic due to spin-orbit coupling within both the so-called spherical approximation and in the more realistic six band model. The spherical approximation strongly overestimates this anistropy, especially for short distances between Mn ions. Using the obtained effective Hamiltonian we carry out Monte Carlo simulations of finite and zero temperature magnetization and find that, due to orientational frustration of the spins, non-collinear states appear in both valence band approximations for disordered, uncorrelated Mn impurities in the small concentration regime. Introducing correlations among the substitutional Mn positions or increasing the Mn concentration leads to an increase in the remnant magnetization at zero temperature and an almost fully polarized ferromagnetic state.Comment: 17 Pages, 13 Figure

    Disorder, spin-orbit, and interaction effects in dilute Ga1−xMnxAs{\rm Ga}_{1-x}{\rm Mn}_x{\rm As}

    Full text link
    We derive an effective Hamiltonian for Ga1−xMnxAs{\rm Ga}_{1-x}{\rm Mn}_x {\rm As} in the dilute limit, where Ga1−xMnxAs{\rm Ga}_{1-x}{\rm Mn}_x {\rm As} can be described in terms of spin F=3/2F=3/2 polarons hopping between the {\rm Mn} sites and coupled to the local {\rm Mn} spins. We determine the parameters of our model from microscopic calculations using both a variational method and an exact diagonalization within the so-called spherical approximation. Our approach treats the extremely large Coulomb interaction in a non-perturbative way, and captures the effects of strong spin-orbit coupling and Mn positional disorder. We study the effective Hamiltonian in a mean field and variational calculation, including the effects of interactions between the holes at both zero and finite temperature. We study the resulting magnetic properties, such as the magnetization and spin disorder manifest in the generically non-collinear magnetic state. We find a well formed impurity band fairly well separated from the valence band up to xactive≲0.015x_{\rm active} \lesssim 0.015 for which finite size scaling studies of the participation ratios indicate a localization transition, even in the presence of strong on-site interactions, where xactive<xnomx_{\rm active}<x_{\rm nom} is the fraction of magnetically active Mn. We study the localization transition as a function of hole concentration, Mn positional disorder, and interaction strength between the holes.Comment: 15 pages, 12 figure
    corecore