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Longitudinal and spin-Hall conductance of a two-dimensional Rashba system
with arbitrary disorder
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We calculate the longitudinal and spin-Hall conductances in four-lead bridges with Rashba-Dresselhaus
spin-orbit interactions. Numerical results are obtained both within the Landauer-Büttiker formalism and by the
direct evaluation of the Kubo formula. The microscopic Hamiltonian is obtained in the tight-binding approxi-
mation in terms of the neareast-neighbor hopping integral t, the Rashba spin-orbit coupling VR, the Dresselhaus
spin-orbit coupling VD, and an Anderson-type, on-site disorder energy strength W. We reconfirm that below a
critical disorder threshold, the spin-Hall effect is present. Further, we study the effect on the two conductivities
of the Fermi energy, Rashba and/or Dresselhaus coefficient ratio and system size.

DOI: 10.1103/PhysRevB.72.165335 PACS number�s�: 72.20.�i, 72.10.�d, 72.90.�y

I. INTRODUCTION

Known to exist for a long time,1 the spin-orbit �SO� cou-
pling in two-dimensional electronic systems �2DEG� has re-
ceived a lot of attention lately motivated by its potential
applications in spintronics. Recent experiments2 have dem-
onstrated that the magnitude of the spin-orbit coupling can
be modified by a voltage gate, hence generating the premise
of the possible manipulation of spin currents by electric
fields alone. The two sources of the spin-orbit coupling are
the inversion asymmetry of the confining potential in the
direction perpendicular to the 2DEG �Rashba� and the
bulk asymmetry and interface inversion asymmetry
�Dresselhaus�.3

In a very interesting development,4 Sinova et al. predicted
that a spin-Hall current of a transverse spin component ap-
pears in a 2DEG with SO coupling as a response to a in-
plane electric field. This spin current has a universal value,
equal to e /8�. The intrinsic spin-Hall effect is quite different
from the extrinsic spin-Hall effect5 proposed by Hirsch,
which is generated by impurity scattering. The possible ex-
istence and persistence in disordered systems of the intrinsic
spin-Hall effect �SHE� have been the focus of many recent
papers.6 The question of whether or not arbitrary small
amounts of disorder suppress the intrinsic SHE is still wait-
ing for a definite answer. Some analytical calculations7 claim
that SHE does not survive even in the weak disorder regime,
while others8 provide arguments that SHE is robust and a
weak disorder in the system is not enough to destroy this
effect. While the problem was studied in more detail using
analytical methods, there are few unbiased numerical
calculations9 at present.

In this work, we present numerical results for the longi-
tudinal and spin-Hall conductivities of a 2DEG with spin-
orbit interactions, both Rashba and Dresselhaus, in the pres-
ence of disorder. These values are obtained within a spin-
dependent Landauer-Buttiker formalism, developed for a

microscopic Hamiltonian written in a tight-binding approxi-
mation that incorporates both the spin-orbit interaction and
disorder. As a further check, we calculate the same conduc-
tances by using the Kubo formalism and find good agree-
ment between the two sets of results. Our findings suggest
that the spin-Hall effect occurs in disordered systems, for as
long as the disorder remains below a critical threshold value.
We also study the dependence of the conductivities on the
Fermi energy, system size, and on the relative strengths of
the two types of SO coupling.

In Sec. II of the paper we present the general framework
of spin-dependent LB formalism used for computing the
spin-Hall conductance, while in Sec. III we show and discuss
our results. For comparison, in the Appendix, we compute
the same conductances by using the Kubo formalism.

II. SYSTEM DESCRIPTION

The single particle Hamiltonian for an electron of mo-
mentum p= �px , py�, spin �= ��x ,�y ,�z�, and effective mass
m*, in a 2DEG with Rashba ��� and Dresselhaus ��� spin-
orbit interactions is

H =
p2

2m* + ���xpy − �ypx� + ���xpx − �ypy� . �1�

The relative strengths of the Rashba and Dresselhaus terms,
� /� describing the spin-orbit coupling in semiconductor
quantum wells, are available from photocurrent
measurements.10 The interplay of the two SO couplings has
also been lately subject to intense theoretical investigations
with respect to other physical phenomena such as magneto-
oscillation phenomena in quantum wells or spin splitting of
the electron energy states in quantum dots.12

We discretize the Hamiltonian using a tight-binding ap-
proach, where the solution domain is filled with a regular
virtual lattice. The Hamiltonian is constructed over this lat-
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tice assuming only nearest-neighbor coupling. This can be
done straightforwardly by using the projections on x and y
directions of the momentum operator p=−i�� in Eq. �1�.
The resulting tight-binding Hamiltonian is:

H = �
i,�,

�ici�
† ci� − t �

�i,j�,�
ci�

† cj� + VR�
i

��ci↑
† ci+	x↓ − ci↓

† ci+	x↑�

− i�ci↑
† ci+	y↓ + ci↓

† ci+	y↑�� + VD�
i

��− i��ci↑
† ci+	x↓

+ ci↓
† ci+	x↑� + �ci↑

† ci+	y↓ − ci↓
† ci+	y↑�� . �2�

Here t=�2 / �2m*a0
2� is the hopping integral, VR=�� /a0, and

VD=�� /a0 are the Rashba and Dresselhaus coupling
strengths, respectively, renormalized by the lattice constant
a0, and 	x and 	y are the unit vectors along the x and y
directions. The hopping matrix element t represents the unit
of energy in our calculations. The second, third, and last
terms in Eq. �2� can be combined and a compact expression
for the Hamiltonian can be written in the form:

H = �
i,


�ici

† ci
 − �

�i,j�,
,�
tij

�ci


† cj�, �3�

where cj
 �cj

† � is the annihilation �creation� operator of an

electron of spin index 
 at site j. The first term in Eq. �3� is
the on-site disorder, as in the Anderson model, with �i, a
random energy generated by a box distribution �i� �−W /2 ,
W /2�. The SO interactions are directly incorporated in the
hopping term which acquires position and spin dependence.

The Hamiltonian given by Eq. �3� is studied in a N�N
square lattice, as presented in Fig. 1. Each metallic lead at-
tached to the sample is considered a perfect semi-infinite
wire, without disorder and SO interactions. VR and VD are
also assumed to be zero in leads 3 and 4 in order to avoid
spin flips at the boundaries. Throughout our calculations we
use the same values for the cross sections of leads and
sample, in order to eliminate scattering induced by the wide-
to-narrow geometry.13

Within the LB formalism the total current in terminal p is
given by Ip=e2 /h�q�pTpq�Vp−Vq�, where the sum is over all
the other leads q connected to the system. Spin current can
be defined in a similar way, up to a constant: Ip,


spin

=e / �4���q�p,�Tpq

��Vp−Vq�. The voltages are computed by

considering ballistic transport between all the connected ter-
minals and imposing the following boundary conditions: V2
=0 �fixes the arbitrary zero of voltage�, I3=2e /���I3,�

spin=0,
I4=2e /���I4,�

spin=0 �terminals 3 and 4 are voltage probes� and
I1+ I2=0, �guarantees that current flows between terminals 1
and 2�. The zero temperature conductance G that describes
the spin-resolved transport measurements, is related with the
transmission matrix T, as in

G =
e2

h
T =

e2

h
�T↑↑ T↑↓

T↓↑ T↓↓ 	 . �4�

�Indices p and q were suppressed in writing Eq. �4�.� Tpq

�

represents the transmission probability over all the conduc-
tion channels to detect a spin 
 in the lead p arising from an
injected spin � electron in lead q, when both spin-flip and
non-spin-flip processes are considered. The transmission co-
efficient can be calculated as Tpq


�=Tr�p

GRq

�GA�, where
p


= i��p

−�p


†� with �p

 the retarded self-energy due to the

interaction between the sample and the lead for spin channel

. The self-energy contribution is computed by modeling
each terminal as a semi-infinite perfect wire. In our tight-
binding model, the hopping between the lead orbitals and
between the leads and the sample orbitals are equal14 with t
�unit of energy�. The self-energy matrix, which is diagonal in
spin indices, can be written as:

�p = ��p
↑ 0

0 �p
↓ 	 �5�

with �p
↑=�p

↓ for a perfect metallic lead. The retarded Green’s
function is computed as GR= �EF−H−�p=1

4 �p�−1, where EF

is the Fermi energy and H is the Hamiltonian in Eq. �3�. The
advanced Green’s function is, of course, GA=GR

† .
In the LB formalism, the total scattering between two

leads p and q can be simply written as the sum over all spin
components Tpq=Tpq

↑↑+Tpq
↑↓+Tpq

↓↑+Tpq
↓↓. Two other useful

combinations15 are Tpq
in =Tpq

↑↑+Tpq
↑↓−Tpq

↓↑−Tpq
↓↓ and Tpq

out=Tpq
↑↑

+Tpq
↓↑−Tpq

↑↓−Tpq
↓↓. Tpq

out represents the difference between the
transmission probabilities to detect an electron in the lead p
arising from an injected spin ↑ �↓� electron in lead q. These
expressions allow us to compute the spin-Hall conductance
as

GsH =
I3,↑

spin − I3,↓
spin

V1
. �6�

Finally, by using the voltages obtained inverting the multi-
probe equations, the spin-Hall conductance becomes

GsH = e/�8���T13
out + T43

out + T23
out − T34

in − 2T31
in � . �7�

At the same time, the longitudinal conductance GL
= I2 / �V1−V2� is written as

GL = e2/h�T21 + 0.5T32 + 0.5T42� , �8�

when four terminals are connected to the sample as in Fig. 1.
The spin-Hall and longitudinal conductances are the central
quantities of our analysis. In the next section, we present

FIG. 1. Graphical depiction of the lattice model used for com-
puting the spin-Hall conductance. Four metallic leads �represented
as the dashed regions� acting as injector �1�, detector �2�, and volt-
age probes �3 and 4� are attached to the 2DEG. Position and spin
dependence are not explicitly decided for the hopping integral.
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results showing their dependence on the Fermi energy, sys-
tem size, and disorder strength.

III. RESULTS AND DISCUSSION

Clean limit. The clean limit dependence of the spin-Hall
conductance �SHC� on the Fermi energy is shown in Fig. 2.
The electron-hole symmetry is preserved throughout the cal-
culation, so the SHC vanishes at the band center EF=0 and is
an odd function relative to the Fermi energy, in agreement
with the results of Ref. 9. The small oscillations observed in
the energy dependence are finite-size effects related with the
discontinuities in the self-energy contribution from the ter-
minals and with the discrete energy levels.

Another important parameter is the ratio r=VR /VD. When
r=1, for any energy, GsH=0 �see Fig. 2, right panel, and Fig.
5�. For a holelike behavior �EF�0� and r�1, GsH is posi-
tive, while for r�1, GsH changes sign, demonstrating that
the spin current is generated in the direction of the major
driving field.16 Experimentally,10,11 the tuning parameter r
could be varied between 1.5 and 2.5.

Figure 3 presents the effect of the Dresselhaus SO cou-
pling on the longitudinal conductance as function of Fermi
energy, for a fixed value of the Rashba coupling. In contrast,
in Fig. 4 the Fermi energy is fixed to EF=−2t and the longi-
tudinal conductance is plotted as a function of both Rashba
and Dresselhaus interactions. Here, r=1 still represents a

symmetry line in the parameter space �VR ,VD�. For a fixed
value of the Fermi energy, we found the symmetry relation:
GL�VR ,VD�=GL�VD ,VR�.

In Fig. 5 we present the spin-Hall conductance as function
of VR and VD. SHC is antisymmetric along the VD=VR line.
The Fermi energy is fixed at EF=−2t and the system size is
20�20. For a lattice parameter of a0=5.0 nm and electron
effective mass m*=0.068 m �in GaAs�, the hopping integral
is t
19.0 meV. A typical value for the Rashba coupling,17,18

is �50–80 meV Å, which corresponds to VR=1−1.6 meV,
with a typical ration VR / t
0.05–0.08. The results presented
in Fig. 2 �upper panel� are beyond the experimental reach. In
Fig. 2 �lower panel� we represent the Fermi energy depen-
dence of the SHC with an experimental accessible value for
the spin-orbit interaction strength, and, as expected, the SHC
amplitude is strongly reduced. However, the overall behavior
is preserved.

The effect of scaling as function of system size is pre-
sented in Fig. 6. Spin Hall conductance is essentially con-
stant up to, at least, system sizes 50�50. However we em-
phasize that the effect of boundaries, due to the attached
leads, may be very important and, in principle, can hide the
true nature of the bulk spin-Hall effect.

Our analysis shows that in the clean limit, a nonuniversal
value for SHC exists, in agreement with other numerical

FIG. 2. �a� The Fermi energy dependence of the spin-Hall con-
ductance �SHC� of a two-dimensional four-probe bridge in the clean
limit, for a fixed Rashba coupling VR=0.5 and for different Dressel-
hauss energies. �b� SHC dependence on VD for different Rashba
couplings, for Fermi energy EF=−2t in the clean limit. For VR

=VD, the SHC vanishes. The system size is 20�20. �c� The SHC
represented as function of EF for VR=0.06 and VD=0.0.

FIG. 3. The longitudinal conductance as function of the Fermi
energy for different Dresselhaus SO couplings, as indicated. The
system size is 20�20.

FIG. 4. �Color online� Longitudinal conductance plotted as a
function of VR and VD for a system size 20�20 and for a Fermi
energy EF=−2t. The spectrum is antisymmetric along the VD=VR

line. The spin-Hall conductance is positive for VR�VD, negative for
VR�VD, and vanishes for VD=VR.
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calculations.9 SHC strongly depends on the strength of spin-
orbit couplings, while the spin current is always along the
driving field in the system and depends on the relative
strength of the Rashba and Dresselhaus couplings. In the
holelike �electronlike� regime, characterized by EF�0�EF

�0�, sgn�SHC�� ±sgn�VR−VD�.
Arbitrary disorder. A system with time reversal symme-

try, but with spin rotational symmetry broken by the spin-
orbit coupling, belongs to the symplectic universality class.
It is well established by now that SU�2� models with chiral
symmetry exhibit an Anderson transition in two-dimension.19

Critical disorder strength was estimated to be WC
5.9 and
the critical exponent for the localization length �
2.74. In
our model, different values for the hopping coupling may
lead to different values for the disorder strength. However, it
is understood that SHC cannot survive in the insulating re-
gime of a 2DEG, because any localized state cannot contrib-
ute to SHC. It is still not clear whether SHC vanishes in the
diffusive transport when the mobility edge ±EC moves to-
wards the band center and localized states in the band tails
coexist with extended states in the band center. To answer
this question we study the effect of disorder on SHC. In Fig.
7 �left panel� we represent the SHC as function of disorder
strength for different VD. We find that GsH can be suppressed
by a strong scattering when W�4–5, close to the metal-
insulator transition disorder strength. In the left panel the
Dresselhaus coupling is zero and the Rashba coupling
strength dependence of SHC is presented. For comparison

we have plotted also the result when no disorder is present in
the system.

Energy dependence was also considered in the presence
of disorder. �see Fig. 8, lower panel�.

In the insulating regime, all states are localized, so the
absence of extended states available for transport at the
Fermi level leads to a vanishing SHC. When disorder is
weak enough, extended states in the band center coexist with
insulating states localized mostly in the band tails. These
extended states may be responsible for nonvanishing SHC
when small amounts of disorder are present in the system.

It is well known that in the Landauer-Büttiker formalism
the attached leads play an important role, affecting the sys-
tem self-energy, and can alter the nature of the bulk spin-Hall
effect, while this is not the case in the Kubo formalism.

To study the effect of terminals on the spin-Hall and lon-
gitudinal conductances we did a direct calculation of conduc-
tances within the Kubo formalism �see the Appendix for fur-
ther details�. We found good agreement between the
conductance values obtained in both the LB and Kubo for-
malisms. In Fig. 9 we present the these results for a system
of size 16�16. The electron-hole symmetry is also pre-
served in the Kubo formalism, so the spin-Hall conductance
vanishes at half filling, as in the LB formalism.

In Ref. 16, Sinitsyn et al. and Shen use the Kubo formula
to compute the spin-Hall conductance analytically, when
both the Rashba and Dresselhaus couplings are considered.

FIG. 5. �Color online� The spin-Hall conductance plotted as a
function of VR and VD for a system size 20�20 and for a Fermi
energy EF=−2t. The spectrum is antisymmetric along the VD=VR

line. The spin-Hall conductance is positive for VR�VD, negative for
VR�VD, and vanishes for VD=VR.

FIG. 6. �Color online� Linear system size dependence of the
spin-Hall conductance for a Fermi energy EF=2.0t, with VR=0.5
and for VD= �0.0��� ,0.3��� ,0.6��� , and 0.9���.

FIG. 7. �Color online� �a� Disorder strength dependence of the
SHC with Rashba spin-orbit strength VR=0.4. �b� SHC as function
of Rashba coupling for different disorder strengths W. �c� SHC
as function of Fermi energy and for different disorder strengths W.
Electron-hole symmetry is preserved in the presence of disorder. In
the upper panels Fermi energy is EF=−2.0t. System size is 16
�16 in all figures.

C. P. MOCA AND D. C. MARINESCU PHYSICAL REVIEW B 72, 165335 �2005�

165335-4



As in our case, they find that the spin-Hall conductance van-
ishes when the Rashba and Dresselhaus couplings have the
same strength. The predicted value of the SHC, however, is a
constant ±e /8�, depending on the ration VR /VD. In contrast,
in our numerical approach, the SHC is no longer a universal
constant, but rather a function of the Fermi energy and of the
Rashba/Dresselhaus coupling strengths.

IV. CONCLUSIONS

In this work we have investigated the longitudinal and
spin-Hall conductances of a two-dimensional electronic sys-
tem with Rashba and Dresselhaus spin-orbit coupling in the
framework of a tight binding approximation. For the main
part of the work we have used Landauer-Büttiker formalism
combined with Green’s function approach to study the effect
of spin-orbit coupling and disorder on GL and GsH. Our re-
sults for the spin Hall conductance, as function of Fermi
energy and disorder strength, in the case when Dresselhaus
coupling is neglected, agree with the results of Ref. 9 which
is a special case of the present model.

We have also computed the Fermi energy dependence of
longitudinal and spin-Hall conductances in the Kubo formal-
ism. The good agreement found between the two sets of
conductances computed in LB and Kubo formalisms
strengthens the assumption that the spin-Hall effect is a bulk
property of the system. However, further studies are needed
in order to clarify the role of terminals. For example, one can
investigate the scaling of spin-Hall conductance as function
of the system size, both in the Landauer-Büttiker and the
Kubo formalisms.
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APPENDIX A: COMPARISON WITH THE KUBO
FORMALISM

In this Appendix we present the derivation for the Kubo
formula used for computing the longitudinal and spin-Hall
conductances.

In terms of single-particle states, the longitudinal conduc-
tivity can be computed from the general Kubo formula:

�L�r,r�� = − i��
n,n�

Pn� − Pn

En� − En

�n��jx�r��n��n�vx�r���n��
En� − En + i�0+ .

�A1�

Similarly, for the spin-Hall conductance we write

�sH�r,r�� = �
n,n�

Pn� − Pn

En� − En

Im�n��jx
z�r��n��n�vy�r���n��

En� − En + i�0+ .

�A2�

The single-particle states are constructed from the site orbit-
als as bn

†=�i,��n�i ,��ci�
† . Operator bn

† stands for the creation
of a single particle state �n� from the one-electron wave func-
tions, �n�i ,��. The wave functions �n�i ,�� and the corre-
sponding eigenenergies En can be easily obtained by solving
the eigenvalue problem for the Hamiltonian �3�.

The velocity operator is defined by the commutator: i�v
= �r ,H�, while the spin current is given in terms of the anti-
commutator between the velocity operator and Pauli matrix
�z: jx

z =� /4��z ,vx. A simple quantum mechanics calculation

FIG. 8. �Color online� Longitudinal conductance as function of
disorder strength �a�, and as function of Rashba spin-orbit coupling
strength �b� for different disorder amplitude. �c� Effect of disorder
on the energy dependence of the longitudinal conductance. The sys-
tem size is 16�16. Disorder average is over 1000 samples.

FIG. 9. �Color online� Longitudinal �a� and spin-Hall conduc-
tance �b� for a system size of 16�16. Solid lines represent results
obtained using the Kubo formalism while the dashed lines are ob-
tained using the Landauer-Büttiker method. Results are average
over 500 samples. Energy is measured in units of t.

LONGITUDINAL AND SPIN-HALL CONDUCTANCE OF A… PHYSICAL REVIEW B 72, 165335 �2005�

165335-5



gives for the current and for the spin-current operators the
following expressions:

�n�v�n�� =
1

i�
�

i,j,�,�
�n

*�i,����ri − r j�Hij
�,���n�j,�� �A3�

�n�jz�n�� =
e

4i
�

i,j,�,�
�n

*�i,����ri − r j�H̃ij
�,���n�j,�� . �A4�

In Eq. �A4�, H̃= ��z � 1 ,H.
At T=0 K, when the Fermi function derivative is approxi-

mated by a 	 function, we write:

Pn� − Pn

En� − En
=� dE

�f�E�
�E

	�En − E� = − 	�En − EF� . �A5�

Incorporating Eqs. �A3�–�A5�, in Eqs. �A1� and �A2� a
simple expression for longitudinal and spin-Hall conduc-
tance in terms of single-particle wave functions and eigenen-
ergies is obtained. We note that only terms at the Fermi lev-
els give contributions to the longitudinal conductance
therefore we keep only the 	 function part from �En�−En

+ i�0+�−1, in Eq. �A1�. In this respect, the longitudinal con-
ductance is a sum of weighted 	 functions which have to be
broadened into functions having a finite width �for example,
a Lorentzian�. When the spin-Hall conductance is computed,
the principal value of �En�−En+ i�0+�−1 is needed in Eq.
�A2�.
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