10,157 research outputs found

    Experimental transonic flutter characteristics of two 72 deg-sweep delta-wing models

    Get PDF
    Transonic flutter boundaries are presented for two simple, 72 deg. sweep, low-aspect-ratio wing models. One model was an aspect-ratio 0.65 delta wing; the other model was an aspect-ratio 0.54 clipped-delta wing. Flutter boundaries for the delta wing are presented for the Mach number range of 0.56 to 1.22. Flutter boundaries for the clipped-delta wing are presented for the Mach number range of 0.72 to 0.95. Selected vibration characteristics of the models are also presented

    Surgical and Medical Applications of Drones: A Comprehensive Review

    Get PDF
    Drones have the ability to gather real time data cost effectively, to deliver payloads and have initiated the rapid evolution of many industrial, commercial, and recreational applications. Unfortunately, there has been a slower expansion in the field of medicine. This article provides a comprehensive review of current and future drone applications in medicine, in hopes of empowering and inspiring more aggressive investigation

    Science aspects of 1980 ballistic missions to comet Encke, using Mariner and Pioneer spacecraft

    Get PDF
    Science aspects of a 1980 spacecraft reconnaissance of Comet Encke are considered. The mission discussed is a ballistic flyby (more exactly, a fly-through) of P/Encke, using either a spin stabilized spacecraft, without despin of instruments, or a 3-axis stabilized spacecraft

    Scientific possibilities of a solar electric powered rendezvous with comet Encke

    Get PDF
    The minimum scientific spacecraft instrumentation is considered that is likely to result in as complete an understanding of the composition, structure, and activity of a cometary nucleus as is possible without landing on it. The payload will also give useful results on secondary goals of a better understanding of physical processes in the inner and outer coma. Studies of composition, by means of an actual landing on the surface, details of the internal structure of the nucleus, and sample return were considered beyond the scope of this mission

    Investigation of Split Groundplanes at the Connector for EMI Control

    Get PDF
    EMI can often be reduced by selectively filtering various parts of a given system. One common method employed by designers is to split the groundplane near the chassis and route I/O lines over the split. The rationale is based on providing a large series impedance to common-mode currents on the I/O lines. In this manner, PCB designers hope to lower the level of noise currents contributing to radiation. This work studies the efficacy of the groundplane split as a deterrent for EMI associated with I/O lines being driven against other extended reference structures. A test-board was developed to analyze the impedance of the groundplane split with various configurations

    A composite system approach to aircraft cabin fire safety

    Get PDF
    The thermochemical and flammability characteristics of two polymeric composites currently in use and seven others being considered for use as aircraft interior panels are described. The properties studied included: (1) limiting oxygen index of the composite constituents; (2) fire containment capability of the composite; (3) smoke evolution from the composite; (4) thermogravimetric analysis; (5) composition of the volatile products of thermal degradation; and (6) relative toxicity of the volatile products of pyrolysis. The performance of high temperature laminating resins such as bismaleimides is compared with the performance of phenolics and epoxies. The relationship of increased fire safety with the use of polymers with high anaerobic char yield is shown. Processing parameters of one of the baremaleimide composites are detailed

    High-Temperature Transport Properties of Yb4−xSmxSb3

    Get PDF
    Polycrystalline L4Sb3 (L = La, Ce, Sm, and Yb) and Yb4−x Sm x Sb3, which crystallizes in the anti-Th3P4 structure type (I-43d no. 220), were synthesized via high-temperature reaction. Structural and chemical characterization were performed by x-ray diffraction and electronic microscopy with energy-dispersive x-ray analysis. Pucks were densified by spark plasma sintering. Transport property measurements showed that these compounds are n-type with low Seebeck coefficients, except for Yb4Sb3, which shows semimetallic behavior with hole conduction above 523 K. By partially substituting Yb by a trivalent rare earth we successfully improved the thermoelectric figure of merit of Yb4Sb3 up to 0.7 at 1273 K

    Stability and electronic structure of the complex K2_2PtCl6_6 structure-type hydrides

    Full text link
    The stability and bonding of the ternary complex K2_2PtCl6_6 structure hydrides is discussed using first principles density functional calculations. The cohesion is dominated by ionic contributions, but ligand field effects are important, and are responsible for the 18-electron rule. Similarities to oxides are discussed in terms of the electronic structure. However, phonon calculations for Sr2_2RuH6_6 also show differences, particularly in the polarizability of the RuH6_6 octahedra. Nevertheless, the yet to be made compounds Pb2_2RuH6_6 and Be2_2FeH6_6 are possible ferroelectrics. The electronic structure and magnetic properties of the decomposition product, FeBe2_2 are reported. Implications of the results for H storage are discussed

    Evolution of magnetized, differentially rotating neutron stars: Simulations in full general relativity

    Get PDF
    We study the effects of magnetic fields on the evolution of differentially rotating neutron stars, which can form in stellar core collapse or binary neutron star coalescence. Magnetic braking and the magnetorotational instability (MRI) both redistribute angular momentum; the outcome of the evolution depends on the star's mass and spin. Simulations are carried out in axisymmetry using our recently developed codes which integrate the coupled Einstein-Maxwell-MHD equations. For initial data, we consider three categories of differentially rotating, equilibrium configurations, which we label normal, hypermassive and ultraspinning. Hypermassive stars have rest masses exceeding the mass limit for uniform rotation. Ultraspinning stars are not hypermassive, but have angular momentum exceeding the maximum for uniform rotation at the same rest mass. We show that a normal star will evolve to a uniformly rotating equilibrium configuration. An ultraspinning star evolves to an equilibrium state consisting of a nearly uniformly rotating central core, surrounded by a differentially rotating torus with constant angular velocity along magnetic field lines, so that differential rotation ceases to wind the magnetic field. In addition, the final state is stable against the MRI, although it has differential rotation. For a hypermassive neutron star, the MHD-driven angular momentum transport leads to catastrophic collapse of the core. The resulting rotating black hole is surrounded by a hot, massive, magnetized torus undergoing quasistationary accretion, and a magnetic field collimated along the spin axis--a promising candidate for the central engine of a short gamma-ray burst. (Abridged)Comment: 27 pages, 30 figure
    corecore