1,395 research outputs found

    Computing Macro-Effects and Welfare Costs of Temperature Volatility: A Structural Approach

    Get PDF
    We produce novel empirical evidence on the relevance of temperature volatility shocks for the dynamics of productivity, macroeconomic aggregates and asset prices. Using two centuries of UK temperature data, we document that the relationship between temperature volatility and the macroeconomy varies over time. First, the sign of the causality from temperature volatility to TFP growth is negative in the post-war period (i.e., 1950–2015) and positive before (i.e., 1800–1950). Second, over the pre-1950 (post-1950) period temperature volatility shocks positively (negatively) affect TFP growth. In the post-1950 period, temperature volatility shocks are also found to undermine equity valuations and other main macroeconomic aggregates. More importantly, temperature volatility shocks are priced in the cross section of returns and command a positive premium. We rationalize these findings within a production economy featuring long-run productivity and temperature volatility risk. In the model temperature volatility shocks generate non-negligible welfare costs. Such costs decrease (increase) when coupled with immediate technology adaptation (capital depreciation)

    Polarized Signaling via Purinoceptors in Normal and Cystic Fibrosis Airway Epithelia

    Get PDF
    Airway epithelia are confronted with distinct signals emanating from the luminal and/or serosal environments. This study tested whether airway epithelia exhibit polarized intracellular free calcium (Ca2+i) and anion secretory responses to 5′ triphosphate nucleotides (ATP/UTP), which may be released across both barriers of these epithelia. In both normal and cystic fibrosis (CF) airway epithelia, mucosal exposure to ATP/UTP increased Ca2+i and anion secretion, but both responses were greater in magnitude for CF epithelia. In CF epithelia, the mucosal nucleotide–induced response was mediated exclusively via Ca2+i interacting with a Ca2+-activated Cl− channel (CaCC). In normal airway epithelia (but not CF), nucleotides stimulated a component of anion secretion via a chelerythrine-sensitive, Ca2+-independent PKC activation of cystic fibrosis transmembrane conductance regulator. In normal and CF airway epithelia, serosally applied ATP or UTP were equally effective in mobilizing Ca2+i. However, serosally applied nucleotides failed to induce anion transport in CF epithelia, whereas a PKC-regulated anion secretory response was detected in normal airway epithelia. We conclude that (1) in normal nasal epithelium, apical/basolateral purinergic receptor activation by ATP/UTP regulates separate Ca2+-sensitive and Ca2+-insensitive (PKC-mediated) anion conductances; (2) in CF airway epithelia, the mucosal ATP/UTP-dependent anion secretory response is mediated exclusively via Ca2+i; and (3) Ca2+i regulation of the Ca2+-sensitive anion conductance (via CaCC) is compartmentalized in both CF and normal airway epithelia, with basolaterally released Ca2+i failing to activate CaCC in both epithelia

    Polarized distribution of HCO3- transport in human normal and cystic fibrosis nasal epithelia

    Get PDF
    The polarized distribution of HCO3− transport was investigated in human nasal epithelial cells from normal and cystic fibrosis (CF) tissues. To test for HCO3− transport via conductive versus electroneutral Cl−/HCO3− exchange (anion exchange, AE) pathways, nasal cells were loaded with the pH probe 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein and mounted in a bilateral perfusion chamber. In normal, but not CF, epithelia, replacing mucosal Cl− with gluconate caused intracellular pH (pHi) to increase, and the initial rates (ΔpH min−1) of this increase were modestly augmented (∼26 %) when normal cells were pretreated with forskolin (10 μm). Recovery from this alkaline shift was dependent on mucosal Cl−, was insensitive to the AE inhibitor 4,4′-diisothiocyanatodihydrostilbene-2,2′-disulfonic acid (H2DIDS; 1.5 mm), but was sensitive to the cystic fibrosis transmembrane conductance regulator (CFTR) channel inhibitor diphenylamine-2-carboxylate (DPC; 100 μm). In contrast, removal of serosal Cl− caused pHi to alkalinize in both normal and CF epithelia. Recovery from this alkaline challenge was dependent on serosal Cl− and blocked by H2DIDS. Additional studies showed that serosally applied Ba2+ (5.0 mm) in normal, but not CF, cells induced influx of HCO3− across the apical membrane that was reversibly blocked by mucosal DPC. In a final series of studies, normal and CF cells acutely alkaline loaded by replacing bilateral Krebs bicarbonate Ringer (KBR) with Hepes-buffered Ringer solution exhibited basolateral, but not apical, recovery from an alkaline challenge that was dependent on Cl−, independent of Na+ and blocked by H2DIDS. We conclude that: (1) normal, but not CF, nasal epithelia have a constitutively active DPC-sensitive HCO3− influx/efflux pathway across the apical membrane of cells, consistent with the movement of HCO3− via CFTR; and (2) both normal and CF nasal epithelia have Na+-independent, H2DIDS-sensitive AE at their basolateral domain

    Obesity, nonalcoholic fatty liver disease and adipocytokines network in promotion of cancer

    Get PDF
    Western populations are becoming increasingly sedentary and the incidence of nonalcoholic fatty liver disease (NAFLD) is increasing and becoming one of the most common causes of liver disease worldwide. Also, NAFLD is considered one the new emerging risk factors for development of tumors of the gastro-intestinal tract, particularly hepatocellular carcinoma (HCC). Visceral obesity is an important risk factor for the onset of NAFLD. An accumulation of ectopic fat, including visceral obesity and fatty liver leads to a dysfunction of the adipose tissue with impaired production of adipocytokines which, in turn, favor an increase in pro-inflammatory cytokines. In this review, we discuss how the obesity-related chronic state of low-grade inflammation and the presence of NAFLD lead to the emergence of a microenvironment favorable to the development of cancer

    Primary Vaginal Carcinoma Arising on Cystocele Mimicking Vulvar Cancer

    Get PDF
    Background: Primary vaginal carcinoma is a rare gynaecological tumour representing 1%–3% of all gynaecologic cancers. Several studies report increased vaginal cancer risk associated with genital prolapse following the occurrence of inflammatory lesions or decubitus ulcers. Case: We report the rare case of an 82-year-old woman with primary squamous cell carcinoma arising from vaginal wall prolapse. Vaginal carcinoma was suspected during gynaecological examination for vulvar bleeding. A wide local excision was performed and pathologic examination revealed a primary squamous cell carcinoma of the vagina. Conclusion: Persistent genital prolapse may be at risk for vaginal carcinoma, and cytological and a colposcopic assessments are essential to identify patients who require diagnostic biopsy

    The Mitochondrial Barriers Segregate Agonist-induced Calcium-dependent Functions in Human Airway Epithelia

    Get PDF
    In airway epithelia, purinergic receptor (P2Y2-R) stimulation of intracellular calcium (Ca2+i)–regulated ion transport is restricted to the membrane domain ipsilateral to receptor activation, implying compartmentalization of Ca2+i signaling. Because mitochondria can spatially restrict cellular Ca2+i signals, immunocytochemical, electron microscopic, and fluorescent studies of mitochondria localization were performed in human airway epithelia. Although concentrated at the apical domain, mitochondria were found distributed at both the apical and the basolateral poles and in close association with the endoplasmic reticulum. The role of mitochondria in locally restricting P2Y2-R–induced Ca2+i signals was investigated by measuring changes in mitochondrial Ca2+ (Ca2+m) in human airway epithelial monolayers. P2Y2-R activation induced Ca2+m accumulation in mitochondria confined to the domain ipsilateral to P2Y2-R stimulation, which was blocked by mitochondrial uncoupling with 1 μM CCCP and 2.5 μg/ml oligomycin. The role of mitochondria in restricting the cellular cross-talk between basolateral P2Y2-R–dependent Ca2+i mobilization and apical membrane Ca2+-activated Cl− secretion was investigated in studies simultaneously measuring Ca2+i and Cl− secretion in cystic fibrosis human airway epithelial monolayers. Activation of basolateral P2Y2-Rs produced similar increases in Ca2+i in monolayers without and with pretreatment with uncouplers, whereas Ca2+i-activated Cl− secretion was only efficiently triggered in mitochondria-uncoupled conditions. We conclude that (a) mitochondria function as a Ca2+i-buffering system in airway epithelia, compartmentalizing Ca2+i-dependent functions to the membrane ipsilateral to receptor stimulation; and (b) the mitochondria provide structural barriers that protect the airway epithelia against nonspecific activation of Ca2+i-modulated functions associated with Ca2+i signals emanating from the apical or the basolateral membrane domains

    Radical scavenging activity of olive oil phenolic antioxidants in oil or water phase during the oxidation of O/W emulsions: An oxidomics approach

    Get PDF
    Omics approaches are recently being applied also in food lipid oxidation, to increase knowledge of oxidation and antioxidation mechanisms. The so-called oxidomics throws a wider spot of light on the complex patterns of reactions taking place in food lipids, especially in dispersed systems. This research aimed to investigate the radical scavenging activity of olive oil phenolic antioxidants (OPAs) in O/W emulsions, as affected by the phase in which they were added. This allowed one to assess whether different behaviors could be expected from antioxidants originally present in phenolic-rich olive oils compared to natural antioxidants added in the water phase during emulsion production. Hydroperoxide decomposition kinetics and the analysis of volatile pattern provided an outline of antioxidation mechanisms. Though being effective in slowing down oxidation when added both in the oil and water phase, OPAs interfered in different ways with oxidation pathways, based on the phase in which they were added. OPAs added to the water phase were more effective in slowing down hydroperoxide decomposition due to the hydrophilic radical initiator. On the other hand, OPAs present in the oil were more effective in preventing radical propagation, with relevant consequences on the volatile pattern

    Manipulation of light quality is an effective tool to regulate photosynthetic capacity and fruit antioxidant properties of Solanum lycopersicum L. cv. ‘Microtom’ in a controlled environment

    Get PDF
    Light quality plays an essential role in setting plant structural and functional traits, including antioxidant compounds. This paper aimed to assess how manipulating the light spectrum during growth may regulate the photosynthetic activity and fruit bioactive compound synthesis in Solanum lycopersicum L. cv. ‘Microtom’ to improve plant physiological performance and fruit nutritional value. Plants were cultivated under three light quality regimes: red-green-blue LEDs (RGB), red-blue LEDs (RB) and white fluorescent lamps (FL), from sowing to fruit ripening. Leaf functional traits, photosynthetic efficiency, Rubisco and D1 protein expression, and antioxidant production in fruits were analyzed. Compared to FL, RGB and RB regimes reduced height and increased leaf number and specific leaf area, enhancing plant dwarf growth. The RGB regime improved photosynthesis and stomatal conductance despite lower biomass, favoring Rubisco synthesis and carboxylation rate than RB and FL regimes. The RB light produced plants with fewer flowers and fruits with a lower ascorbic acid amount but the highest polyphenol content, antioxidant capacity and SOD and CAT activities. Our data indicate that the high percentage of the green wavelength in the RGB regime promoted photosynthesis and reduced plant reproductive capacity compared to FL and RB. Conversely, the RB regime was the best in favoring the production of health-promoting compounds in tomato berries

    Neural responses to facial and vocal expressions of fear and disgust

    Get PDF
    Neuropsychological studies report more impaired responses to facial expressions of fear than disgust in people with amygdala lesions, and vice versa in people with Huntington's disease. Experiments using functional magnetic resonance imaging (fMRI) have confirmed the role of the amygdala in the response to fearful faces and have implicated the anterior insula in the response to facial expressions of disgust. We used fMRI to extend these studies to the perception of fear and disgust from both facial and vocal expressions. Consistent with neuropsychological findings, both types of fearful stimuli activated the amygdala. Facial expressions of disgust activated the anterior insula and the caudate-putamen; vocal expressions of disgust did not significantly activate either of these regions. All four types of stimuli activated the superior temporal gyrus. Our findings therefore (i) support the differential localization of the neural substrates of fear and disgust; (ii) confirm the involvement of the amygdala in the emotion of fear, whether evoked by facial or vocal expressions; (iii) confirm the involvement of the anterior insula and the striatum in reactions to facial expressions of disgust; and (iv) suggest a possible general role for the perception of emotional expressions for the superior temporal gyrus
    corecore