4,326 research outputs found

    Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity

    Full text link
    Dynamical Chern-Simons gravity is an extension of General Relativity in which the gravitational field is coupled to a scalar field through a parity-violating Chern-Simons term. In this framework, we study perturbations of spherically symmetric black hole spacetimes, assuming that the background scalar field vanishes. Our results suggest that these spacetimes are stable, and small perturbations die away as a ringdown. However, in contrast to standard General Relativity, the gravitational waveforms are also driven by the scalar field. Thus, the gravitational oscillation modes of black holes carry imprints of the coupling to the scalar field. This is a smoking gun for Chern-Simons theory and could be tested with gravitational-wave detectors, such as LIGO or LISA. For negative values of the coupling constant, ghosts are known to arise, and we explicitly verify their appearance numerically. Our results are validated using both time evolution and frequency domain methods.Comment: RevTex4, 12 pages, 8 figures, 3 Tables. v2: minor typos corrected and references added. Published versio

    Astrophysical signatures of boson stars: quasinormal modes and inspiral resonances

    Full text link
    Compact bosonic field configurations, or boson stars, are promising dark matter candidates which have been invoked as an alternative description for the supermassive compact objects in active galactic nuclei. Boson stars can be comparable in size and mass to supermassive black holes and they are hard to distinguish by electromagnetic observations. However, boson stars do not possess an event horizon and their global spacetime structure is different from that of a black hole. This leaves a characteristic imprint in the gravitational-wave emission, which can be used as a discriminant between black holes and other horizonless compact objects. Here we perform a detailed study of boson stars and their gravitational-wave signatures in a fully relativistic setting, a study which was lacking in the existing literature in many respects. We construct several fully relativistic boson star configurations, and we analyze their geodesic structure and free oscillation spectra, or quasinormal modes. We explore the gravitational and scalar response of boson star spacetimes to an inspiralling stellar-mass object and compare it to its black hole counterpart. We find that a generic signature of compact boson stars is the resonant-mode excitation by a small compact object on stable quasi-circular geodesic motion.Comment: 20 pages, 8 figures. v2: minor corrections, version to be published in Phys. Rev. D. v3: final versio

    Light rings as observational evidence for event horizons: long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects

    Full text link
    Ultracompact objects are self-gravitating systems with a light ring. It was recently suggested that fluctuations in the background of these objects are extremely long-lived and might turn unstable at the nonlinear level, if the object is not endowed with a horizon. If correct, this result has important consequences: objects with a light ring are black holes. In other words, the nonlinear instability of ultracompact stars would provide a strong argument in favor of the "black hole hypothesis," once electromagnetic or gravitational-wave observations confirm the existence of light rings. Here we explore in some depth the mode structure of ultracompact stars, in particular constant-density stars and gravastars. We show that the existence of very long-lived modes -- localized near a second, stable null geodesic -- is a generic feature of gravitational perturbations of such configurations. Already at the linear level, such modes become unstable if the object rotates sufficiently fast to develop an ergoregion. Finally, we conjecture that the long-lived modes become unstable under fragmentation via a Dyson-Chandrasekhar-Fermi mechanism at the nonlinear level. Depending on the structure of the star, it is also possible that nonlinearities lead to the formation of small black holes close to the stable light ring. Our results suggest that the mere observation of a light ring is a strong evidence for the existence of black holes.Comment: 10 pages, RevTeX

    An H<SUP>1</SUP>-Galerkin method for a Stefan problem with a quasilinear parabolic equation in non-divergence form

    Get PDF
    Optimal error estimates in L2 H1 and H2-norms are established for a single phase Stefan problem with quasilinear parabolic equation in non-divergence form by an H1-Galerkin procedure

    An emergency vehicles allocation model for major industrial disasters

    Get PDF
    One of the main issues in the event of a major industrial disaster (fire, explosion or toxic gas dispersion) is to efficacy manage emergencies by considering both medical and logistics issues. From a logistics point of view the purpose of this work is to correctly address critical patients from the emergency site to the most suitable hospitals. A Mixed Integer Programming (MIP) Model is proposed, able to determine the optimal number and allocation of emergency vehicles involved in relief operations, in order to maximize the number of successfully treated injured patients. Moreover, a vehicles reallocation strategy has been developed which takes into account the evolution of the patients health conditions. Alternative scenarios have been tested considering a dynamic version of the Emergency Vehicles Allocation Problem, in which patient health conditions evolves during the rescue process. A company located in Italy has been considered as case-study in order to evaluate the performance of the proposed methodology

    Gravitational waves from extreme mass-ratio inspirals in Dynamical Chern-Simons gravity

    Full text link
    Dynamical Chern-Simons gravity is an interesting extension of General Relativity, which finds its way in many different contexts, including string theory, cosmological settings and loop quantum gravity. In this theory, the gravitational field is coupled to a scalar field by a parity-violating term, which gives rise to characteristic signatures. Here we investigate how Chern-Simons gravity would affect the quasi-circular inspiralling of a small, stellar-mass object into a large non-rotating supermassive black hole, and the accompanying emission of gravitational and scalar waves. We find the relevant equations describing the perturbation induced by the small object, and we solve them through the use of Green's function techniques. Our results show that for a wide range of coupling parameters, the Chern-Simons coupling gives rise to an increase in total energy flux, which translates into a fewer number of gravitational-wave cycles over a certain bandwidth. For space-based gravitational-wave detectors such as LISA, this effect can be used to constrain the coupling parameter effectively.Comment: RevTex4, 18 pages, 7 figures, 1 tabl

    Effect of the (Nd,Dy)-double doping on the structural properties of ceria

    Get PDF
    The crystallographic properties of the Ce1-x(Nd0.63Dy0.37)xO2-x/2 system (0 64 x 64 0.6) were studied by means of synchrotron powder X-ray diffraction and compared to the ones of Sm-doped ceria. The aim of this work was to investigate the effect of substituting Sm3+ by a mixture of a smaller and a larger ion that ensures a more pronounced Ce4+/dopant size mismatch while having the same average ionic size as Sm3+. Two main findings came to light: (a) the compositional region of the CeO2-based solid solution widens up to x ranging between 0.4 and 0.5, and (b) the cell parameter is larger than the one of Sm-doped ceria at each composition. Both effects are expected to play a significant role on the ionic conductivity of the material. The results are discussed in terms of disorder and cation-vacancy association

    Water Quality and Pollution Status of Lararpur Reservoir with Special Reference to Bacterial Contamination

    Get PDF
    Laharpur dam was constructed in the southwest of Bhopal city, M.P., India with an objective to store water for irrigational purpose. At the time of planning and construction of the reservoir it was in the outskirts of township but now, with the expansion of the city the reservoir has come well within the settlement. The developmental activities and occupancy in the area is exerting pressure on the water body. Surface water in urban water bodies almost always contains some degree of contamination. This is due to exposure to animals, humans, aquatic life, etc. In addition to this, variety of other human activities resulted in increasing the bacterial concentration of reservoir. Many of these bacteria are pathogenic and spread diseases like typhoid, paratyphoid, gastroenteritis etc. Inflow of sewage in the surface water may play an important role in the transmission of pathogenic agents discharged through feces. Some pathogenic bacteria like Actinomyces sp., Aerobacter aerogenes, A. cloacae, Micrococcus sp., Salmonella sp., Staphylococcus aureus, Bacillussp, and Shigella species indicate the higher level of fecal contamination of water. This untreated water poses a serious threat to the health of consumers and therefore, calls for urgent intervention by government.&#xd;&#xa
    corecore