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I. INTRDDION.

With the help of Galerkin finite element methods, Nitsche in his pioneering works

[I]-[3] established error estimates for linear problems, proposed earlier by Magenes

[4]. We extended his analysis to nonlinear problems in divergence form [5]-[6]. In

the present work, a single phase Stefan problem with quasilinear parabolic equation in

non-divergence form is considered and under appropriate conditions optimal error

estimates for Galerkin approximation in L2 H as well as H2 norms are established

We require more regularity assumptions for the present one than for the cases

discussed in [5]-[6], and consequently we improve upon the estimates in L2-norm.
The organization of the paper is as follows: In section 2, the description of

the problem and the transformed system with some preliminaries are presented. The

weak formulation and HI-Galerkin procedure are discussed in section 3. Section 4

deals with an auxiliary projection and some approximation Lemmas. In section 5

optimal error estimates in L
2

H and H2-norms for continuous time Galerkin

approximations are established, assuming existence of the approximate solution.

Finally, in section 6 the question of global existence and uniqueness of the Galerkln

approximation is discussed.

2. PIOBLEM DESCRIPTION AND D0t4AIN FIXINg.

The nonlinear heat conduction with change of phase can be modelled as a single

phase nonlinear Stefan problem in a variable domain (T) x (0,TO ), where R(T)

{y- (0,S(T)) and S(T) known to be the free boundary We state this problem as

follows:

Find a pair {U,S}, U U (y,T), S S(T) such that U satisfies
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U a(U) Uyy --0, for (y,T) e (T) (0, TO

with initial and boundary conditions

(2.1)

U(y,0) g(y), for y e I (0,I) (2.2)

u (0,.) 0
y

for >0

for > 0

U(S() ,) 0, (2.3)

and S, the free boundary satisfies

S -Uy(S(),), for > 0 (2.4)

with S(0) I. The above problems is a special case of the general situation discus-

sed in Fasano et. al. [7], where ’a’ depends only on U, q =- 0 and -U (S(T),)
Y

in their notations.

We use the following notiations. Let () R be a bounded domain for > 0.

Let (u,v) I uv dx and lull 2 (u,u). For each nonnegative integer m, let
()

Hm(()) be the usual Sobolev space Wm’P((T)), for p 2 with the norm

dE,

Further, wm"((1)) is defined as usual with the norm

W
mIn case I (), we shall omi I from Hm(I) L (I) and (I) and norm

If X be a normed linear space with norm I1.11 X and #: (a,b) X, then we

denote by

<q<(R)

and

I*l is accordingly defined.
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In case (a b) (0 T) and X H
m

W
m’ Jl Jlor we write simply ,,,,wk,q(Hm

for or
Wm’(R) I*llwkfor For conve-

wTM

2;nience, we use x x’ xx x2 t -- and (I) (l,t), if (x,t).

Throughout this work, K will always denote a generic constant On occasion, we will

show that a constant depends on certain parameters, while independent of others

We shall now state our main assumption on a(.), g and the solution U,S and

call them collectively ’condition B’.

CONDITION B.

(i) For p E R, a(p) > , where is a positive constant.

(ii) For p E R, a(p) c3(R) and there is a common bound K! > 0 such that lal,
apl’ lapp[ and [apppl KI"

(iii) The initial function g is sufficiently smooth and satisfies the compatibility

condition that is gy(0) g(1) 0.

(iv) The problem (2.1)-(2.4) has a unique solution.

For the existence and uniqueness of the solution of (2.1)-(2.4), see Fasano et.al. [7].

Further it is assumed that the solution U,S of (2.1)-(2.4) satisfies the follow-

ing regularity condition. For an integer r > I,

Hr+l W
2 Hr+! W

,
U e (0,T0; (fl(T)) (0,r0; ((T))) n (0,T0; ’ (())),

S WI’(R)(0,TO ).

Let K
2

be the bound for the functions in above mentioned

We fix the free boundary, using Landau type transformation [8]

x s-l()y, > 0. (2.5)

Further, we introduce an additional transformation in time scale given by

t t(T) I S-2(T ’)d’, (2.6)
0

in order to decouple the resulting transformed system. A routine calculation shows

that the function u(x,t) U(y,) satisfies

u
t a(U)Uxx -Ux(1)x Ux, x e I, t (0,T]

u(x,0) g(x), x I;

(2.7)

(2.8)

Ux(0,t) u(l,t) 0, t > 0 (2.9)
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and the function s(t) S(1) satisfies

ds
dt Ux(1)s, t > 0 (2.10)

with s(0) I.

Here, t T corresponds to I T
O

Note that all the regularity assumptions for

U,S are carried over to u,s with the bound say K
2

and the new regularity

assumptions are collectively called RI. Further, the integral (2.6) can be rewritten

as

dr 2
d--{ s (t), with (0) 0. (2.11)

3. WAK IeORILATION AND HI-GALKIIN PROKDURK.

Consider the space:

0
H2H2(1) {v (I): v (0) v(1) 0}

x

The weak formulation of (2.7)-(2.9) is given by

0

(Utx,Vx) + (a(U)Uxx, Vxx) Ux(1)(xux, Vxx), v e H2(1) and t > 0 (3.1)

with u(x,0) g(x).

0
HI-Galerkin Procedure. Let S

h
(0 < h_< I) be a finite dimensional subspace of

0 0r,2H2(1) belonging to regular S
h

family, for a definition see Oden et. al. [9] and

satisfying the following approximation and inverse properties:

0
(i) For v E Hm(1) H2(1), there is a constant K^ independent of h such that

for j 0 2 and 2<m<r+l;inf IIv-xIIj < K
0

hm-j llVllm.....
Xe h

0

0
Now we call uh: (0,T] S

h
an HI-Galerkin approximation of u, if it satisfies

0h
uh. h(uhtx’ Xx) + (a(uh) Uxx’ Xxx) x l)(XUx’ Xxx), X S

h
(3.2)

and the initial condition

uh(x,0) Qhg(x), (3.3)

0
where Qh is an appropriate projection of u onto S

h
at t 0, to be defined later.

Further, the Galerkin approximations s
h

and h of s and respectively are

given by
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dSh uh(1)s
h

with Sh(0)dt x
(3.4)

and

dlh 2
d--{- Sh’ with h(0) 0. (3.5)

4. SOME APPROXIILTION LE.

Set

A(u;v w) (a(U)Vxx Wxx) Ux(1)(xvx ); for u e WI’ H
2

v and w e (4.1),Wxx

The boundedness and Garding type inequality for A can be established by standard

arguments.
0

LEMMA 4.!. For u W ’ v and w H2ljt

(4.2)

and

_> llVxxll
where M, a and p are constants, but M and p may depend on u

x .
Define

L

A(u;v,w) A(u;v,w) + O(Vx,Wx )"

0
Note that A(u,.,.) is coercive in H2, that is

>_ llVxxll
0

Let u S
h

be an approximation of u with respect to the form Ap:

(4.4)

0

Ao(u; u-u,X) 0, X Sh, (4.5)

Now, an application of Lax-Milgram theorem shows the existence of a unique solution u

of equation (4.5).

Consider

0
/ l)(Xxx Oxx u e H

2
L* (u) (a(U)xx) xx Ux( x

0
For e L2(1), define e H

4
H
2

by

(4.6)

L*(u) ; x I (4.7)

XXlx=l xXXlx=0 0.
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0
Then, for v e H2(1) we get

(v, L*(u)) %(u;v,). (4.8)

Thus, defining D(L*) as

D(L*) { e H
4

0
H2: xx (I) xxx(0) O}

we have from the positivity and boundedness of A that at least a weak solution

D(L*) of (4.7) for each e L
2

exists and the regularity

11’114 < Co It11, (4.9)

where CO depends on u and its derivatives, holds.

Let u u. We now need to obtain some estimates of and its temporal de-

rivatives qt’ for our future use. The following Lemma proves very convenient for

our purpose.
0

LEIA 4.2. Let H2(1) and satisfy

0

Ao(u;h ,X) F(X), e Sh, (4.10)

0
where F: H2(1) R and linear. Let there exist constants M and M

2
with M > M

2
such that

0
IF(*)I < M1 II*xxtl’ * H2 (4.11)

and

(4.12)

Then, for sufficiently small h

and

0
X S

h

It’ ]l <--K3 [(M + inf [1 -XII2)h2 + M2]
0

e S
h

where K
3 K3(a,O,M,C0;K0) is used as generic constant.

PROOF. Note that

0

Ap(u; ,) Ap(u;,-X) F(-X) + F(h), e S h.

(4.13)

(4.14)

By coercive property (4.4) for AO,

l xxl _<

we get

I< II*  II + inf II -II _ + II x IIl-
0

X S
h
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I1,11 _< <>-[ inf I1 - t1,
0
S
h

+ 2KM

and the estimate (4.13) follows. In order to get an L2-estimate, we follow here

Aubin-Nitsche duality arguments. For e L2(1), define e D(L*) by (4.7).
0

Multiply both the sides of (4.7) by to obtain for u H2,

(,) ( ,L* (u)) A (u;,)

A (u;,@-X) + F(- @) + F(@)

(4.15)

From (4.9), (4.13) and (4.15), we obtain the required estimate (4.14).

The next Lemma contains the error estimates related to and
t

4.3. For t E [o,T], the following estimates

and

I1,,:11. <_. % ’<llull + Ilu,:llm>,

(4.16)

j 0,1,2 and 2 <_ m r+1, (4.17)

hold. Here K4 and K5 are positive constants depending on parameters expressed

through the following expressions that is

K
4 K4(K0 ,K3) and K

5
K5(K0 ,K ,K3 ,K4 lu: II ,- "’’ lull .)-

W W

PROOF. Put and F 0 in the previous Lemma 4.2 to get

Xg S
h

0

0
X Sh
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0

Similarly, we get the estimate (4.16), for j 0, consequently, the estimate for IIBIII
follows from the interpolation inequality,

I/2

In order to estimate t’ we differentiate (4.5) with respect to ’t’ and obtain

ida(u)Ap(u;nt,X) (- nxx, Xxx) + Utx(1) (xnx, Xxx).
0

Identifying the right hand side of (4.18) with F(X), we see that for @ H2(1)

(4.18)

where K
6

depends on K and lu ll --W
0

Further, for e D(L*) and u e H2, we get on integration by parts

F() (rx ’(at (U)xx)x) -Utx (1)(n (Xqxx)x)

and

(,(at(u)#xx)xx) + Utx(1)(,(X#xx)x)

where K7 K7 (  ,llu xxl ., Iluxxll. and Ilu ll
L L W

the desired estimate (4.17) for j 0,2. For j I, as usual we make use of the

interpolation inequality. We shall also need later the following estimate for Bx(1).
LK 4.4. There is a constant (a,K0, M; K4) such that for 2 m r+l.

0
PROOF. Define an auxiliary function # H

4
H
2

as a solution of

L*(u) O, x e I

Cxxx x=O O;

Cxx Ix=l 1.
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Multiplying by n the first equation and integrating by parts, we obtain

0
< AC;n, -x), s

h

h

Hence, the result follows.

5. A PRIORI ERROR ESTDLATES FOR CoIrlhJOUS TINE GALEIIN APPROKINATION.

Throughout this section, we assume that there are positive constants K* and h
0

0
h

such that a Galerkin approximation u e S
h

in (3.2) exists and satisfies,

[[uhl[. H2
< K*, for 0 < h < h0,

K(

uh(x, 0) is defined as Qhg, satisfyingwhere

0

Ao(g; g- Qhg, X) 0, X S h-

(5.1)

(5.2)

uh(Clearly, x, 0) u(x, 0).

h hLet u u and e u u .
THORR 5.1. Suppose u- satisfies (4.5) and uh, the Galerkln approx-

imation of u is defined by (3.2) with Qh given as in (5.2). Further, assume that

(5.1) holds. Then, there is a constant (, , K*, KI, K4, K5
and K8) such

that for m > 4

+ II;xxl[ <__ K9 (l[utll 2
+ I[ull ). (5.3)IEXlIL=(L2) L2(L2) L <Hm) L2(hm)

PROOF. From (4.5) and (3.1) with v X, we get

0

(Utx Xx) + AD(u; u, X) -(ntx, Xx) + P(uX, Xx), X Sh.

Subtracting this from (3.2), we obtain

h h
(tx’ Xx) + A0(u u X) Ap (u; u, X) (nix, Xx) -P(nx, Xx)

+ p ( xx) (5.4)
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But

(u
h a(uhh

(u; u, )Ap u X) Ap xx’ Xxx

h
+ ([a(uh) a (u)] u Xxx) Ux(l)(xx xx + nx(1)(XUx X.xx

x (1)(xuxh, xx + (x’ x )" (5.5)

From (5.4)-(5.5) with X , it follows on integrating by parts with respect to

the two terms on the right hand side of (5.4),

hd IIxl12 + (a(u) (n + (r )+ Ux(1)(Xx xx)2 d t xx xx t xx xx

+ ([a(u) a (uh)] u xx -nx(1)(xu xx + (1)(xu ).
XX X XX

Using a(.) > , (5.1) and replacing u by u n, we obtain

d 2 2

(5.6)

0
Since I=x()l i IIxtl ’z II=xxll ’z o = ., applying Young’s inequality for the

2
a e

b
2

last term and the inequality ab --+ a, b 0; e > 0 for the remaining terms

0
in (5.6), we get using ]III llxll for H

2

L

d 2 2, Itxll + ’ IIxxll <-.’:,o II,,xll

Now with appropriate

With this choice of

choice of E, KI0() can be made less than or equal to /2.

, we get by integrating with respect to ’t’ and using

Gronwall’s inequality the following
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From (4.|6)-(4.17) and (4.19) with 2(m-2) m and 2m 3 m that is m 4, we get

the desired estimate (5.3).

COROLLAR 5.2. Let all the assumtions of the previous theorem hold and the
0

finite dimensional subspace S
h satisfy the inverse property. Then there is a

constant KII depending on and K
0

such that for r + m 4,

L (Hm) L (Hm)

0
PROOF. From the estimate (5.3) and I1=tl < I xll = , get

L Hm) L Hm)

0
By inverse property for Sh, we have

0

L L

Hence the result (5.7). From Theorem 5.1, Corollary 5.2, Lemma 4.3 and triangle in-

equality we get the following theorem.

THKORE 5.3. Let the solution u of (2.7)-(2.9) satisfy the regularity

condition R Further, suppose that there are positive constants h and
0

o
h

K* (K* > 2K2) such that an approximate solution u S
h

of (3.2) satisfying (5.1)

exists in I (0,T] for 0 < h < h0. Then, the following estimates hold for r > 3,

<_ K1 hr+l-j j 0 1,2 (5 8)I1 1 =
where KI2 KI2(K4, KII and K2). Besides, for sufficiently small h and r > 3,

lu ll H2
< 2K

2 < K* (5.9)
L(

and consequently, KI2 can be choosen independent of K*.

PROOF. The estimates (5.8) for j 0,1,2 are immediate from the Theorem 5.1,

Corollary 5.2 and Lemma 4.3 by triangle inequality. To prove (5.9), we note

L(
< llull

H
2

+ llell
H
2

L L

hr-1<-- K2 + KI2

< 2, for sufficiently small h and r > 3.
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We are now looking for approximations of U and

solution of (2.1)-(2.4). The Galerkin approximations

S, where the pair {U, S} is the
hU and S

h
are given by

uh(y,T) uh(x,t) (5.10)

sh(T) Sh(t (5.11)

where,

y sh(t)x (5.12)

T =T h.

and Sh, T
h

are defined by (3.4), (3.5) respectively.

TRKORKM 5.4. Suppose that the condition B and the regularity condition R

are satisfied. Then the following estimates hold for r > 3,

[[S-Sh[ 0 (hr + I) (5.13)
e (0,T0

L (0,T0

(5.14)

and

L (0,T0; HJ((T)))
0 (hr+l-j), j 0,I,2, (5.15)

where is interpreted as

L (0,T0; HJ((T))) 0 HJ((T))
aT

with

PROOF.

fl (T) (0, min (S(T), Sh(T))).
From (2.10) and (3.4), we have

t t

Is-  l _<S (l"x<’>l / / S Is-s, l
0 0

An application of Gronwall’s inequality and the estimates (4.19), (5.3), for

m r + gives

< K(K2’ ){h2(r-l)lul 2 Hr+lL(
+ llxxll 2 L2L(

hr+l<_ El3 for r > 3. (5.16)
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L (O,T0) L (0,T)

Further, the estimate (5.14) follows from (2.11), (3.5) and (5.16). Finally since

L (0,T0; HJ(())) L (0,T; HJ(1))
we obtain the required estimate (5.15).

6. GLOBAL EXISTENCE AND HNIQHEESS OF THE GALERKIN APPROXIMATION.
hNow we consider the problem of existence of the Galerkin approximation u in

the domain of existence of u. Towards this, let us recall (5.4) and note

h h
(uh) h

xxAo(u u ) Ap(U; u, X) Ap(u; , ) + ([a a(u)] Uxx,

+ nx(1)(xuhx Xxx)- x(l)(xuhx, Xxx).

From the above, we get

(tx’ Xx) + Ap(U; , ) (tx’ x -P(nx’ x + P(x’ x + ([a(u) -a(uh)]

h
x
h h ).Uxx, Xxx) nx(1)(xu Xxx) + x(1)(xux, xx (6.1)

But,

a(u) -a(uh) a e f Ba (u-e)
U

0
e d . (6.2)

Replacing u
h by u-e in (6.1) with (6.2), we have

({tx’ Xx) + Ap(U; {, X) -(n t, Xxx + P (n, Xxx + p (x’ Xx)

,r a (u-e)

0
uu (r1-{)d{ (Uxx-exx) Xxx) -rlx(1) (X(Ux-ex) Xxx)

+
x

(x( Ux-ex )’ Xxx )"

0
Substitute e by E(x, t), where E E H2. Then we get

({tx’ Xx) + Ap(U; {, X) -(n t, Xxx) + p(n, Xxx) + P(x’ Xx)

,[ aa (u-E)

0
(n-)d(Uxx-Exx), Xxx)-nx(1)(X(Ux-Ex), Xxx)

+ x(1)(x(u-Ex) Xxx)X (6.3)
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which is a linear ordinary differential equation in . Therefore, for any E E(x,t)

there exists a unique solution of (6.3) with

(x, 0) 0 (6.4)

in the interval (0,T].

The equation (6.3) defines an operatorJ such that = (E), for each

0
E E H2. Since e n-, therefore

0
e n

__
Aj (E), for each E H

2 (6 5)

h
To show the existence of a solution u of (3.2), we need to show that the operator

equation (6.5) has a fixed point. In other words, we are looking for an e(E) such

that

e(E) E
0

TH.ORM 6.I. Suppose that the finite dimensional space S
h

satisfies inverse

property and u is the unique solution of (2.7)-(2.9). Further, let the regularity

0
R be satisfied. Then for some > 0, there exists a solution u

h
S
hconditions

of (3.2) satisfying lu-uhll < .
e (O,To; H2(1))-

PROOF. Set in (6.3) to get

iI + ; ll.xll2 dt flex

Using Ix(1)l < t=xll / I=xll /=, applying Young’s inequality for the last term

a2 2
and ab <-+ b a,b > O; > 0 for the remaining terms, we get

< K14() Ixl z
/ c, 2, ; )tll’l 12 / I’11 z-

L

Choosing appropriately so that 2 K14(), integrating with respect to ’t’ and

there after applying Gronwall’s inequality, we get
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t

)If {ll +ll
0

From the estimates (4.16), (4.17) and (4.19), it follows that

L( )--
(6.6)

where KI5 KI5 L

L L L

L L (H)

(6.7)

+o I II. < + and from (4.16), (6.6), (6.7), we get
L H

2

lell H2
< K h

r-I
where (K K

4 K0; 6 ).
L’( 6 KI6 El6 5’

Therefore, for sufficiently small h

II II
L(

Now, an application of Schauder’s fixed point theorem guarantees the existence of an

E such that e E, which is a solution of the operator equation (6.5). The
h

uniqueness of the approximate solution u is easy to prove. So we formalize the

above in the form of a Theorem.

TEOREM 6.2. Let all the hypotheses of the Theorem 6.1 be satisfied and let
0

h
K > 0. Then there exists one and only one solution u E S

h
of (3.2) in the ball

{llu-uhll < K}, for sufficiently small h and r > 3.
(H2)-L



360 A.K. PANI and P.C. DAS

I. NITSCHE, J.A. Finite Element Approximations to the One Dimensional Stefan Problem
Proc. on Recent Advances in Numerical Analysis, C. de Boor and G. Golub eds.,
Academic Press, NY (1978), 119-142.

2. NITSCHE, J.A. A Finite Element Method for Parabolic Free Boundary Problems, Inst.
Naz. di Alta Matematica, Vol. I (M. Magenes ed.) (1980), 277-318.

3. NITSCHE, J.A. Finite Element Approximation to One Phase Stefan Problem Free
Boundary Problems: Theory and Appl. an Interdisciplinary Symp., Motecantini,
(Italy) Vol. II (Research Notes in Math. 79), Pitman Adv. Publ. Program.
Boston, London and Melbourne (1983).

4. MAGENES, E. Topics in Parabolic Equations: Some Typical Free Boundary Problems,
Boundary Value Problems for Linear Partial Differential Equations, Proc. NATO
Adv. Stud. Inst. Liege, Belgium, Sept. 1976, H.G. Garnier ed., D. Reidel Publ.
Co., Dortrecht (1976), 239-312.

5. DAS, P.C. and PANI, A.K. A Priori Error Estimates in H and H2-norms for Galerkin
Approximations to a Single Phase Nonlinear Stefan Problem, (Submitted).

6. DAS, P.C. and PANI, A.K. A Galerkin Method For a Single Phase Nonlinear Stefan
Problem with Dirichlet Boundary Conditions, (Submitted).

7. FASANO, A. and PRIMICERIO, M. Free-Boundary Problems For Nonlinear Parabolic
Equations With Nonlinear Free Boundary Conditions, J. Math. Anal. Appl. 72
(1979), 247-273.

8. LANDAU, H.A. Heat Conduction in Melting Solid, Quart. J. Appl. Math. 8_. (1950),
81-94

9. ODEN, J.T. and REDDY, J.N. An Introduction To the Mathematical Theory of Finite

Elements, Wiley Interscience, NY (1976).



Mathematical Problems in Engineering

Special Issue on

Modeling Experimental Nonlinear Dynamics and
Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the
70s, was focused on intentionally built nonlinear parts in
order to improve the operational characteristics of a device
or system. Keying, saturation, hysteretic phenomena, and
dead zones were added to existing devices increasing their
behavior diversity and precision. In this context, an intrinsic
nonlinearity was treated just as a linear approximation,
around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear
and chaotic phenomena, engineers started using analytical
tools from “Qualitative Theory of Differential Equations,”
allowing more precise analysis and synthesis, in order to
produce new vital products and services. Bifurcation theory,
dynamical systems and chaos started to be part of the
mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Prob-
lems in Engineering aims to provide a picture of the impor-
tance of the bifurcation theory, relating it with nonlinear
and chaotic dynamics for natural and engineered systems.
Ideas of how this dynamics can be captured through precisely
tailored real and numerical experiments and understanding
by the combination of specific tools that associate dynamical
system theory and geometric tools in a very clever, sophis-
ticated, and at the same time simple and unique analytical
environment are the subject of this issue, allowing new
methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

Manuscript Due December 1, 2008

First Round of Reviews March 1, 2009

Publication Date June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and
Control Engineering Department, Polytechnic School, The
University of São Paulo, 05508-970 São Paulo, Brazil;
piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de
Matemática Aplicada e Computação (LAC), Instituto
Nacional de Pesquisas Espaciais (INPE), São Josè dos
Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research,
King’s College, University of Aberdeen, Aberdeen AB24
3UE, UK; grebogi@abdn.ac.uk

Hindawi Publishing Corporation
http://www.hindawi.com

http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers4pt
	Guest Editors

