2,804 research outputs found

    Mathieu beams as versatile light moulds for 3D micro particle assemblies

    Get PDF
    We present tailoring of three dimensional light fields which act as light moulds for elaborate particle micro structures of variable shapes. Stereo microscopy is used for visualization of the 3D particle assemblies. The powerful method is demonstrated for the class of propagation invariant beams, where we introduce the use of Mathieu beams as light moulds with non-rotationally-symmetric structure. They offer multifarious field distributions and facilitate the creation of versatile particle structures. This general technique may find its application in micro fluidics, chemistry, biology, and medicine, to create highly efficient mixing tools, for hierarchical supramolecular organization or in 3D tissue engineering

    Measuring orbital angular momentum superpositions of light by mode transformation

    Get PDF
    We recently reported on a method for measuring orbital angular momentum (OAM) states of light based on the transformation of helically phased beams to tilted plane waves [Phys. Rev. Lett.105, 153601 (2010)]. Here we consider the performance of such a system for superpositions of OAM states by measuring the modal content of noninteger OAM states and beams produced by a Heaviside phase plate

    Mammographic image restoration using maximum entropy deconvolution

    Get PDF
    An image restoration approach based on a Bayesian maximum entropy method (MEM) has been applied to a radiological image deconvolution problem, that of reduction of geometric blurring in magnification mammography. The aim of the work is to demonstrate an improvement in image spatial resolution in realistic noisy radiological images with no associated penalty in terms of reduction in the signal-to-noise ratio perceived by the observer. Images of the TORMAM mammographic image quality phantom were recorded using the standard magnification settings of 1.8 magnification/fine focus and also at 1.8 magnification/broad focus and 3.0 magnification/fine focus; the latter two arrangements would normally give rise to unacceptable geometric blurring. Measured point-spread functions were used in conjunction with the MEM image processing to de-blur these images. The results are presented as comparative images of phantom test features and as observer scores for the raw and processed images. Visualization of high resolution features and the total image scores for the test phantom were improved by the application of the MEM processing. It is argued that this successful demonstration of image de-blurring in noisy radiological images offers the possibility of weakening the link between focal spot size and geometric blurring in radiology, thus opening up new approaches to system optimization.Comment: 18 pages, 10 figure

    Experimental high-dimensional two-photon entanglement and violations of generalised Bell inequalities

    Full text link
    Quantum entanglement plays a vital role in many quantum information and communication tasks. Entangled states of higher dimensional systems are of great interest due to the extended possibilities they provide. For example, they allow the realisation of new types of quantum information schemes that can offer higher information-density coding and greater resilience to errors than can be achieved with entangled two-dimensional systems. Closing the detection loophole in Bell test experiments is also more experimentally feasible when higher dimensional entangled systems are used. We have measured previously untested correlations between two photons to experimentally demonstrate high-dimensional entangled states. We obtain violations of Bell-type inequalities generalised to d-dimensional systems with up to d = 12. Furthermore, the violations are strong enough to indicate genuine 11-dimensional entanglement. Our experiments use photons entangled in orbital angular momentum (OAM), generated through spontaneous parametric down-conversion (SPDC), and manipulated using computer controlled holograms

    Synthesis of perfluorinated polyethers

    Get PDF
    A series of highly fluorinated acetylenes was prepared and their cyclization reactions were studied. A series of perfluoropolytriazines with -CF2I pendent groups were prepared. These materials can be cured thermally or photochemically to an elastomeric gum. Perfluoropolytriazines with -CN pendent groups were prepared. These materials can be crosslinked by reaction with terephthalonitrile oxide

    Innovation with High Social Benefits and Corporate Financial Performance

    Get PDF
    This article analyzes the effect that innovation with high social benefit has on financial performance, and to improve our understanding of this effect we extend our research by analyzing the effect of being an innovation leader has on financial performance. We intend to give insight about which innovation strategy impacts with more intensity on financial performance. To support this analysis we will make use of the resource-based view theory and the institutional theory. Our research used the panel data technique. The final sample contains 2025 observations for 418 firms. The results of this research demonstrate that there is a negative and significant effect between innovation with high social benefit and financial performance, highlighting the importance of the involvement of governmental and non-governmental institutions to create an incentive for firms to incur in innovative activities that produce social benefits

    Synthesis and Analysis of Entangled Photonic Qubits in Spatial-Parity Space

    Full text link
    We present the novel embodiment of a photonic qubit that makes use of one continuous spatial degree of freedom of a single photon and relies on the the parity of the photon's transverse spatial distribution. Using optical spontaneous parametric downconversion to produce photon pairs, we demonstrate the controlled generation of entangled-photon states in this new space. Specifically, two Bell states, and a continuum of their superpositions, are generated by simple manipulation of a classical parameter, the optical-pump spatial parity, and not by manipulation of the entangled photons themselves. An interferometric device, isomorphic in action to a polarizing beam splitter, projects the spatial-parity states onto an even--odd basis. This new physical realization of photonic qubits could be used as a foundation for future experiments in quantum information processing.Comment: 6 pages, 5 figures, submitted to PR
    • …
    corecore