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Abstract. Light carries a spin angular momentum associated with its polari-
zation and an orbital angular momentum arising from its phase cross-section.
Sound, being a longitudinal wave, carries no spin component but can carry an
orbital component of angular momentum when endowed with an appropriate
phase structure. Here, we use a circular array of loudspeakers driven at a common
angular frequencyωs but with an azimuthally changing phase delay to create
a sound wave with helical phase fronts described by exp(i`θ). Such waves
are predicted to have an orbital angular momentum to energy ratio of`/ωs.
We confirm this angular momentum content by measuring its transfer to a
suspended 60 cm diameter acoustic absorbing tile. The resulting torque on the
tile (∼6.1× 10−6 Nm) is measured from observation of the motion for various
torsional pendulums. Furthermore, we confirm the helical nature of the acoustic
beam by observing the rotational Doppler shift, which results from a rotation
between source and observer of angular velocityωr. We measure Doppler shifted
frequencies ofωs ± `ωr depending on the direction of relative rotation.
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1. Introduction

It is now widely recognized that light beams can carry both a spin and orbital angular
momentum [1]. The spin angular momentum corresponds to theh̄ spin of individual photons and
at a macroscopic level is evident as circular polarization. In 1992, Allenet al [2] identified that
independently of their polarization state, light beams with an exp(i`θ) helical phase structure
carried an orbital angular momentum of`h̄ per photon. This orbital angular momentum was
successfully transferred to a microscopic particle, causing it to spin on the beam axis [3]. Both
spin and orbital momenta are directed along the beam axis but whereas the spin component
has only two orthogonal states, the orbital component has an unbounded number of orthogonal
states, with̀ taking any integer value. In the case of light, these beams are exemplified by
the Laguerre–Gaussian laser modes. However, it is important to appreciate the orbital angular
momentum of such beams is not dependent upon the precise form of their radial profile rather
upon the helical phase structure alone. Consequently, all beams whether they be Laguerre–
Gaussian, Bessel, or arbitrary superpositions of these, carry an orbital angular momentum`.
Following the realization of the ease with which these beams can be produced within the
laboratory they have featured in many studies of the fundamental properties of light and its
applications [4], both classical [5, 6] and quantum [7].

Although described above as quantized in terms of photons, neither the spin nor
orbital angular momentum is exclusively a quantum property, both being directly calculable
from the cross-products of the EM fields, appropriately integrated over the beam cross-
section [8]. However, that waves carry both energy and momentum is not solely a property
of electromagnetic radiation, rather a generic property of all waves be they transverse or
longitudinal. For both light and sound waves [9], the ratio of the cycled-average momentum
flux 〈P〉 to the energy flux〈E〉 is the reciprocal of the phase velocity,vφ, of the wave, i.e.

〈P〉/〈E〉 = 1/vφ. (1)

Sound is no exception to this, meaning that a 1 W sound beam travelling through air, totally
absorbed by object, exerts a force of≈0.3 mN. However, in a fluid, sound is a longitudinal
rather than transverse wave and is described as a scalar rather than a vector and hence has
no polarization. This means that sound beams cannot carry spin angular momentum, but no
such restriction exists on their orbital angular momentum content. Indeed the linear [10] and
angular [9, 11] momentum content of sound waves have been widely appreciated and compared
to their optical counter parts [12, 13].
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Within the optical regime, helically phased beams are now routinely made by
transformation of a conventional planar wave laser beam using a hologram, i.e. diffractive
optic [14, 15]. Acoustic vortices have also been produced but rather than using holographic
techniques the required azimuthal phase variation is generated directly using various techniques
including optically heated helical surfaces [16] and individually addressed transducers [11]. By
analogy with the optical case, or directly [9] the ratio between the cycled-averaged acoustic
angular momentum flux〈L 〉 and acoustic energy flux〈E〉 is given by

〈L 〉/〈E〉 = `λ/2πvφ, (2)

where vφ is the phase velocity of the sound in the medium (∼340 m s−1 in air at room
temperature). Consequently, a helically phased sound wave absorbed by an object, should set
the object into rotation: anacoustic spanner. We should point out that during preparation of
our manuscript, we were alerted to a similar acoustic momentum transfer experiment [17]. We
believe that both our own and that experiment are consistent with an interpretation of our results
in terms of acoustic angular momentum calculated by equation (2).

Beyond its transfer to matter, another hallmark of helical phase beams is that they are
subject to a rotational frequency shift [18]. The rotational frequency shift is an analogous
but distinct phenomenon to the better-known linear Doppler shift. Whereas the linear shift is
proportional to the velocity between source and observer, the rotational shift is proportional
to the product of the angular momentum of the beam and the rotational velocity between
source and observer. A frequency shift associated with circular polarization, i.e. the spin
angular momentum, was noted as early as 1934 [19]. It has more recently been observed to
be proportional to the sum of the spin and orbital angular momentum of a light beam [20]. For
a sound wave of angular frequencyωs, we would therefore expect a frequency shift given by

1ωs = `ωr, (3)

whereωr is the relative angular velocity between the source and observer.

2. Generating acoustic beams with helical phase

The experimental apparatus to generate an acoustic beam with helical phase is shown in figure1.
We constructed a circular array of 16 loudspeakers, eight of which were used at any given time,
each driven by an individual amplifier capable of providing up to 10 W of electrical power.
The individual speakers were 6 cm in diameter and the circular array was 52 cm across. The
loudspeaker array was itself mounted into the base of a 70 cm diameter cylinder constructed
from sound absorbing lead-foam laminate. This laminate absorbs over 90% of the incident
sound energy.

The electronics used to drive the loudspeaker array consisted of a signal generator feeding
into a phase-shifter circuit providing eight outputs with sequential phases (π/4 steps). The phase
shifter circuit has a logic control line enabling either increasing or decreasing phase as shown
in figure1. This allows for sign reversal of the angular momentum. The outputs from the phase
shifter circuit are individually amplified to produce a final set of signals of approximately equal
amplitude which are fed to the loudspeakers. The resulting acoustic beam travelling from the
loudspeaker array is anticipated to have a helical phase structure described by exp(i`φ), where
` = ±1 (phase change per axial revolution of the acoustic beam of±2π ) depending on the
setting of the logic control. The drive frequency used was around 500 Hz, corresponding to an
acoustic wavelength of approximately 68 cm.
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Figure 1. The experimental system for generating acoustic beams with angular
momentum` = ±1. Eight loudspeakers were active in generating the acoustic
beam, although twice that number were incorporated to allow for failure or
redundancy. The loudspeaker array measured 52 cm in diameter and was placed
at the base of a containment cylinder of lead-foam walls∼70 cm diameter.

3. Acoustic spanner

The acoustic spanner set-up is shown in figure2(a). The acoustic beam is directed upwards
toward a 60 cm diameter tile, manufactured from acoustic absorbing foam suspended from a
thin steel wire above the speaker array.

The diameter of the speaker array is of the order of the acoustic wavelength, consequently
one might expect that the resulting sound beam diverges with the individual speakers acting
as point sources, albeit with the walls of the containment cylinder having some effect on the
propagating field. It is the interference between these speakers that establishes a helically
phased beam with a minimum of intensity on the beam axis. To maximize the momentum
transfer between these speakers and the tile, we position the tile approximately 15 cm above the
speaker array, i.e. in the near-field. The sound field at this point has an annular intensity profile,
suggestive of a Laguerre–Gaussian mode. Closer examination would show that this resemblance
is only an approximation, but it is imperative to appreciate that the orbital angular momentum to
energy ratio is solely a function of the helical phase fronts and therefore is unchanged between
the near and far fields. To further probe the acoustic beam, we have made radial measurements
across the planes of interest in our experiment and found the sound pattern to be remarkably
consistent, as detailed in figure4.

In order to establish a reproducible set of observations, we made measurements with
various suspension wire radii and lengths. Observations were recorded using a DV camera
pointing towards the circular tile allowing its motion to be compared against an angular scale
overlaid on a remote monitor. This also facilitated the effective isolation of the experiment
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Figure 2. The set-up to demonstrate (a) the acoustic spanner and (b) the
rotational Doppler shift. The acoustic tile measured 60 cm in diameter and
was suspended approximately 15 cm above the loudspeakers. For the rotational
Doppler experiment, the microphone was swept in a circular arc approximately
80 cm above the loudspeaker array.

during operation, reducing disturbance and enabling the experimental data-set to be analysed
later against the DV-tape digital time-stamp. The logic control of the phase shifter circuit was
used to remotely change the angular momentum direction while recording results.

Starting with the tile initially at rest, the sound field was switched on and the resulting
angular motion observed. The differential equation governing the motion of the torsional
pendulum is

0s = I θ̈ +γ θ̇ + kθ, (4)

whereθ is the angular displacement,0s is the torque exerted on the tile by the incident acoustic
beam,I is the moment of inertia of the tile (0.022 kg m2), γ is the viscous damping coefficient
andk is the torsional stiffness constant of the pendulum. The motion is that of an under-damped
torsional pendulum. In figure3, we show an experimental data-set of the motion overlayed with
that predicted by equation (4). The various parameters indicated on the graph are all directly
measurable from careful observation of the angular motion of the tile. In particular, by using the
initial accelerationαi, the period of the oscillatory motionT and the final angle of rest of the
tile θmax, we can deduce0s by alternative methods. Firstly, the initial angular acceleration can
be used withI to yield

0s = I αi. (5)
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Figure 3. Comparison of the motion of the pendulum calculated from the
equation of motion and the observed angular displacement. The parameters for
damping and stiffness constant are deduced from observation and the resulting
agreement between predicted and observed motion is good. Measurements of
torque can be deduced fromαi (0s = I αi) or T andθmax (0s = 4π2I θmax/T2).

Secondly, by considering the pendulum to be undergoing simple harmonic motion with period
T = 2π

√
I /k, we can deduce the torsional stiffness constantk. Thereafter, we can use this value

for k along withθmax to give

0s = kθmax =
4π2I

T2
θmax. (6)

Finally, these values for torque can be compared with an estimation of the acoustic torque based
on the acoustic power incident on the tile.

The results presented in table1 show measurements made for two wire radii 50 and 60µm.
We note that in the case of the 50µm wire,θmax is 5.8 radians, is close to one full rotation of the
acoustic tile. The torque values calculated from the initial acceleration and modified equilibrium
position are shown. We have averaged results over` = ±1 for each suspension configuration.
Given the uncertainties in both measurement and system parameters, these values of torque
shown in table1 are reasonably consistent with each other. Assuming each of these to be free of
systematic error, we obtain a best estimate of the measured torque to be 6.1± 0.8× 10−6 Nm,
an answer which is itself statistically compatible with the individual measurements.

This observed value can be compared to that estimated from the acoustic power from
equation (2). The acoustic power is itself estimated from the measured electrical power to the
speakers taken along with a stated audio efficiency of 0.5%. We also averaged measurements
of the typical sound pressure level at the plane of the tile and found the two approaches to
agree within the experimental uncertainty of the overall system. Having estimated the acoustic
energy, the resulting torque depends upon the absorption of the tile material, which is based
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Table 1. Summary of acoustic spanner results. Torque values are shown for the
methods described in the text, using the initial and long-term parts of
the observed motion. Ideally, for a given acoustic set-up, we would expect
the torque to be independent of suspension wire radius and comparable to the
value measured from the properties of the acoustic beam (estimated to be
6.4× 10−6 Nm).

r (µm) L(m) θmax(rad) 0 (Nm) based onαi 0 (Nm) based onθmax, T
50 1.89 5.80 5.6± 1.4× 10−6 6.0± 0.6× 10−6

60 1.22 1.95 4.5± 1.8× 10−6 6.5± 0.7× 10−6

on information given by the manufacturer and is estimated to be 30% for our configuration,
a figure confirmed by our own reflection/transmission measurements. Using this approach
acoustic torque is estimated to be0s = 6.4× 10−6 Nm, which within the experimental errors
agrees with our observations.

A video of the acoustic spanner can be seen inspanner.mov(available from
stacks.iop.org/njp/10/013018/mmedia) where the motion for the 60µm wire is shown speeded
up by a factor of∼ × 20. Thinner and longer wires resulted in an increased rotation, withθmax

exceeding one complete revolution, albeit with some thermal instability.

4. Rotational Doppler shift

The experiment described in the previous section has demonstrated the acoustic angular
momentum produced by our loudspeaker array.

Central to the analysis of that section is the assumption that the speaker array generates a
helically phase beam described by exp(i`θ), and that this phase structure is not compromised by
any residual reflection from the containment cylinder. We check this assumption by considering
another, independent, property of helically phase beams; namely the rotational Doppler effect
experienced by an observer rotating around the axis the beam. The basic experiment is depicted
in figure2(b). For a frequencyωs fed into the loudspeaker electronics, we measureωs from a
static microphone positioned anywhere in the sound field, albeit with changing phase depending
on the position across the helical phase front. In the particular case when the microphone is
swept in a circular path in a plane parallel to the speaker array at an angular velocityωr, we
observe a rotational Doppler shift which results in a modified frequencyωs ± `ωr. The direction
of rotation determines whether the Doppler shift is upwards or downwards in frequency. Note
that the situation here contrasts with those where rotational motion can lead to a linear Doppler
shift. Fundamentally, the Doppler shift described here involves no change of distance between
the observer and the source therefore no linear component of the Doppler shift can exist.

To show the rotational Doppler shift experimentally, we arranged for a microphone to be
rotated around the beam axis and the signal to be recorded with a Stanford FFT Analyser (model
SR780). The microphone was swept in a circular arc with size roughly equivalent to that of
the speaker array and around 80 cm above the speakers. In figure4, we show a typical traverse
scan across the plane containing the circular arc swept out by the microphone. This shows the
sound field to possess a central minimum as would be expected for the` = 1 mode generated
by the speaker array. In figure5, we show an example of Doppler shifted frequency peaks
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Figure 4. Measurements of the sound level across the diameter of the contain-
ment cylinder at the position of the acoustic tile (15 cm height above the
loudspeakers) and the plane where Doppler results were taken (∼80 cm above
the loudspeakers). Each trace represents an average of several traverse scans with
a roaming microphone.
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Figure 5. Results of the rotational Doppler effect measured with a spinning
microphone. The frequency offset in Hz,1 fr, is equal to the revolutions per
second made by the microphone relative to the source (orωr/2π , whereωr is the
relative angular velocity). The downshifted frequency corresponds to the case
when the microphone is rotated in the direction of increasing phase of the helical
phase front.

corresponding to both rotation directions of the microphone. The dominant spectral component
of the sound field clearly moves either above or below the baseline value depending on whether
the microphone is rotated in the direction of increasing phase or decreasing phase of the helical
phase front. Slight variations in the volume of successive speakers as the microphone passes
around the sound field give azimuthal variation in the acoustic energy. In terms of the constituent
modes this corresponds to a superposition of different` values. Consequently one expects, and
indeed observes weak sidebands both above and below our shifted frequency. We note that these
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are small and reasonably symmetric about the centre frequency suggesting that the average`

value is not significantly perturbed from̀= ±1.
In both cases the dominant peak occurs at the Doppler shifted frequency we would expect

from equation (3).

5. Conclusion

We have demonstrated angular momentum transfer between an acoustic beam with helical phase
(` = ±1) and a suspended tile. Results show good self-consistency between the motion of the
tile and the suspension parameters. We have confirmed the helical phase structure of the acoustic
beam by measuring the Doppler shift for a rotating observer.
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