1,225 research outputs found

    Qubits as spectrometers of dephasing noise

    Full text link
    We present a procedure for direct characterization of the dephasing noise acting on a single qubit by making repeated measurements of the qubit coherence under suitably chosen sequences of controls. We show that this allows a numerical reconstruction of the short time noise correlation function and that it can be combined with a series of measurements under free evolution to allow a characterization of the noise correlation function over many orders of magnitude range in timescale. We also make an analysis of the robustness and reliability of the estimated correlation functions. Application to a simple model of two uncorrelated noise fluctuators using decoupling pulse sequences shows that the approach provides a useful route for experimental characterization of dephasing noise and its statistical properties in a variety of condensed phase and atomic systems.Comment: 10 pages, 3 figure

    Qubit coherence control in a nuclear spin bath

    Full text link
    Coherent dynamics of localized spins in semiconductors is limited by spectral diffusion arising from dipolar fluctuation of lattice nuclear spins. Here we extend the semiclassical theory of spectral diffusion for nuclear spins I=1/2 to the high nuclear spins relevant to the III-V materials and show that applying successive qubit pi-rotations at a rate approximately proportional to the nuclear spin quantum number squared (I^2) provides an efficient method for coherence enhancement. Hence robust coherent manipulation in the large spin environments characteristic of the III-V compounds is possible without resorting to nuclear spin polarization, provided that the pi-pulses can be generated at intervals scaling as I^{-2}

    Multi-particle decoherence free subspaces in extended systems

    Get PDF
    We develop a method to determine spatial configurations to realize decoherence-free subspaces for spatially extended multi-particle systems. We have assumed normal reservoir behavior including translational invariance of the reservoir and preparation in stationary states or mixture thereof and weak Markovian system-reservoir coupling that requires energy transfer. One important outcome of our method is a proof that there does not exist a multi-particle decoherence-free subspace in such systems except in the limit that the spatial extent of the system becomes infinitesimal

    Electronic structure of superposition states in flux qubits

    Full text link
    Flux qubits, small superconducting loops interrupted by Josephson junctions, are successful realizations of quantum coherence for macroscopic variables. Superconductivity in these loops is carried by 106\sim 10^6 -- 101010^{10} electrons, which has been interpreted as suggesting that coherent superpositions of such current states are macroscopic superpositions analogous to Schr\"odinger's cat. We provide a full microscopic analysis of such qubits, from which the macroscopic quantum description can be derived. This reveals that the number of microscopic constituents participating in superposition states for experimentally accessible flux qubits is surprisingly but not trivially small. The combination of this relatively small size with large differences between macroscopic observables in the two branches is seen to result from the Fermi statistics of the electrons and the large disparity between the values of superfluid and Fermi velocity in these systems.Comment: Minor cosmetic changes. Published version

    Optimizing entangling quantum gates for physical systems

    Get PDF
    Optimal control theory is a versatile tool that presents a route to significantly improving figures of merit for quantum information tasks. We combine it here with the geometric theory for local equivalence classes of two-qubit operations to derive an optimization algorithm that determines the best entangling two-qubit gate for a given physical setting. We demonstrate the power of this approach for trapped polar molecules and neutral atoms.Comment: extended version; Phys. Rev. A (2011

    Crustal distribution in the central Gulf of Mexico from an integrated geophysical analysis

    Get PDF
    This study addresses the question of the crustal composition in the central part of the northern Gulf of Mexico (GOM) – the region of the major disagreement between published tectonic models. The location of the Ocean-Continental Boundary (OCB) for different tectonic models varies within 140 km (87 mi) in the study area. I have developed a 2D model integrating the seismic reflection and refraction data with potential fields (gravity and magnetics) along the profile through the debated region. Two alternative OCB locations were tested. The preferred model suggests the OCB position near the Sigsbee Escarpment, which is in agreement with the result of Eddy, 2014 and with the findings of the LithoSPAN experiment (Makris et al, 2015). However, the model with an alternative OCB location (further to the north of the Sigsbee Escarpment) may also satisfy the observed gravity and magnetic fields, although the crust in the oceanic domain is thicker than normal. Since the potential fields do not offer the unique answer, the other geophysical data should be examined, such as the Vp/Vs ratio. This parameter was analyzed for the LithoSPAN (Makris et al., 2015) and allowed distinguishing between continental and oceanic domains; it was also examined for GUMBO 3 and 4 (Duncan, 2013). However, the values of Vs derived during retraction experiment for GUMBO 2 are not publically available at this time

    Vibration-enhanced quantum transport

    Full text link
    In this paper, we study the role of collective vibrational motion in the phenomenon of electronic energy transfer (EET) along a chain of coupled electronic dipoles with varying excitation frequencies. Previous experimental work on EET in conjugated polymer samples has suggested that the common structural framework of the macromolecule introduces correlations in the energy gap fluctuations which cause coherent EET. Inspired by these results, we present a simple model in which a driven nanomechanical resonator mode modulates the excitation energy of coupled quantum dots and find that this can indeed lead to an enhancement in the transport of excitations across the quantum network. Disorder of the on-site energies is a key requirement for this to occur. We also show that in this solid state system phase information is partially retained in the transfer process, as experimentally demonstrated in conjugated polymer samples. Consequently, this mechanism of vibration enhanced quantum transport might find applications in quantum information transfer of qubit states or entanglement.Comment: 7 pages, 6 figures, new material, included references, final published versio

    High fidelity one-qubit operations under random telegraph noise

    Full text link
    We address the problem of implementing high fidelity one-qubit operations subject to time dependent noise in the qubit energy splitting. We show with explicit numerical results that high fidelity bit flips and one-qubit NOT gates may be generated by imposing bounded control fields. For noise correlation times shorter than the time for a pi-pulse, the time optimal pi-pulse yields the highest fidelity. For very long correlation times, fidelity loss is approximately due to systematic error, which is efficiently tackled by compensation for off-resonance with a pulse sequence (CORPSE). For intermediate ranges of the noise correlation time we find that short CORPSE, which is less accurate than CORPSE in correcting systematic errors, yields higher fidelities. Numerical optimization of the pulse sequences using gradient ascent pulse engineering results in noticeable improvement of the fidelities for the bit flip and marginal improvement for the NOT gate.Comment: 7 pages, 6 figure
    corecore