1,564 research outputs found

    Negative Electron-electron Drag Between Narrow Quantum Hall Channels

    Full text link
    Momentum transfer due to Coulomb interaction between two parallel, two-dimensional, narrow, and spatially separated layers, when a current I_{drive} is driven through one layer, is studied in the presence of a perpendicular magnetic field B. The current induced in the drag layer, I_{drag}, is evaluated self-consistently with I_{drive} as a parameter. I_{drag} can be positive or negative depending on the value of the filling factor \nu of the highest occupied bulk Landau level (LL). For a fully occupied LL, I_{drag} is negative, i.e., it flows opposite to I_{drive}, whereas it is positive for a half-filled LL. When the circuit is opened in the drag layer, a voltage \Delta V_{drag} develops in it; it is negative for a half-filled LL and positive for a fully occupied LL. This positive \Delta V_{drag}, expressing a negative Coulomb drag, results from energetically favored near-edge inter-LL transitions that occur when the highest occupied bulk LL and the LL just above it become degenerate.Comment: Text file in Latex/Revtex/preprint format, 7 separate PS figures, Physical Review B, in pres

    Error estimation of bilinear Galerkin finite element method for 2D thermal problems

    Get PDF
    This study demonstrates a two-dimensional steady state heat conduction Laplace partial differential equation solution using the bilinear Galerkin finite element method. Heat transfer analysis is of vital importance in many engineering applications and devising computationally inexpensive numerical methods while maintaining accuracy is one of the primary concerns. The method uses structured mesh grid over a two-dimensional rectangular domain and solved using a stiffness matrix for the bilinear elements, calculated using the proposed modified numerical scheme. Several numerical experiments are conducted by controlling the number of nodes and changing element sizes of the presented scheme, and comparison made between analytical solution and software generated solution

    Dominant atmospheric pollutants in malaysia

    Get PDF
    This Article presents a  Brief of the various types of Pollutants that are contributing to the problem of air pollution in Malaysia, As well as the mention of some episodes in air pollution that have given rise to concern her

    Effects of Some Rare Elements on Nicotine Content of the Tobacco Plant

    Full text link

    Efficient multiscale imaging of subsurface resistivity with uncertainty quantification using ensemble Kalman inversion

    Get PDF
    Electrical resistivity tomography (ERT) is widely used to image the Earth's subsurface and has proven to be an extremely useful tool in application to hydrological problems. Conventional smoothness-constrained inversion of ERT data is efficient and robust, and consequently very popular. However, it does not resolve well sharp interfaces of a resistivity field and tends to reduce and smooth resistivity variations. These issues can be problematic in a range of hydrological or near-surface studies, for example mapping regolith-bedrock interfaces. While fully Bayesian approaches, such as those using Markov chain Monte Carlo sampling, can address the above issues, their very high computation cost makes them impractical for many applications. Ensemble Kalman inversion (EKI) offers a computationally efficient alternative by approximating the Bayesian posterior distribution in a derivative-free manner, which means only a relatively small number of 'black-box' model runs are required. Although common limitations for ensemble Kalman filter-type methods apply to EKI, it is both efficient and generally captures uncertainty patterns correctly. We propose the use of a new EKI-based framework for ERT which estimates a resistivity model and its uncertainty at a modest computational cost. Our EKI framework uses a level-set parametrization of the unknown resistivity to allow efficient estimation of discontinuous resistivity fields. Instead of estimating level-set parameters directly, we introduce a second step to characterize the spatial variability of the resistivity field and infer length scale hyperparameters directly. We demonstrate these features by applying the method to a series of synthetic and field examples. We also benchmark our results by comparing them to those obtained from standard smoothness-constrained inversion. Resultant resistivity images from EKI successfully capture arbitrarily shaped interfaces between resistivity zones and the inverted resistivities are close to the true values in synthetic cases. We highlight its readiness and applicability to similar problems in geophysics

    Economical (k,m)-threshold controlled quantum teleportation

    Full text link
    We study a (k,m)-threshold controlling scheme for controlled quantum teleportation. A standard polynomial coding over GF(p) with prime p > m-1 needs to distribute a d-dimensional qudit with d >= p to each controller for this purpose. We propose a scheme using m qubits (two-dimensional qudits) for the controllers' portion, following a discussion on the benefit of a quantum control in comparison to a classical control of a quantum teleportation.Comment: 11 pages, 2 figures, v2: minor revision, discussions improved, an equation corrected in procedure (A) of section 4.3, v3: major revision, protocols extended, citations added, v4: minor grammatical revision, v5: minor revision, discussions extende

    Frictional Coulomb drag in strong magnetic fields

    Get PDF
    A treatment of frictional Coulomb drag between two 2-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity ρ21\rho_{21} is evaluated using diagrammatic techniques. The transresistivity is given by an integral over energy and momentum transfer weighted by the product of the screened interlayer interaction and the phase-space for scattering events. We demonstrate, by a numerical analysis of the transresistivity, that for well-resolved Landau levels the interplay between these two factors leads to characteristic features in both the magnetic field- and the temperature dependence of ρ21\rho_{21}. Numerical results are compared with recent experiments.Comment: RevTeX, 34 pages, 8 figures included in tex

    Technology Development to Explore the Relationship Between Oral Health and the Oral Microbial Community

    Get PDF
    The human oral cavity contains a complex microbial community that, until recently, has not been well characterized. Studies using molecular tools have begun to enumerate and quantify the species residing in various niches of the oral cavity; yet, virtually every study has revealed additional new species, and little is known about the structural dynamics of the oral microbial community or how it changes with disease. Current estimates of bacterial diversity in the oral cavity range up to 700 species, although in any single individual this number is much lower. Oral microbes are responsible for common chronic diseases and are suggested to be sentinels of systemic human diseases. Microarrays are now being used to study oral microbiota in a systematic and robust manner. Although this technology is still relatively young, improvements have been made in all aspects of the technology, including advances that provide better discrimination between perfect-match hybridizations from non-specific (and closely-related) hybridizations. This review addresses a core technology using gel-based microarrays and the initial integration of this technology into a single device needed for system-wide studies of complex microbial community structure and for the development of oral diagnostic devices

    The Quantum Hall Effect in Drag: Inter-layer Friction in Strong Magnetic Fields

    Full text link
    We study the Coulomb drag between two spatially separated electron systems in a strong magnetic field, one of which exhibits the quantum Hall effect. At a fixed temperature, the drag mimics the behavior of σxx\sigma_{xx} in the quantum Hall system, in that it is sharply peaked near the transitions between neighboring plateaux. We assess the impact of critical fluctuations near the transitions, and find that the low temperature behavior of the drag measures an exponent η\eta that characterizes anomalous low frequency dissipation; the latter is believed to be present following the work of Chalker.Comment: 13 pages, Revtex 2.0, 1 figure upon request, P-93-11-09
    corecore