1,779 research outputs found
A spatially explicit model for competition among specialists and generalists in a heterogeneous environment
Competition is a major force in structuring ecological communities. The
strength of competition can be measured using the concept of a niche. A niche
comprises the set of requirements of an organism in terms of habitat,
environment and functional role. The more niches overlap, the stronger
competition is. The niche breadth is a measure of specialization: the smaller
the niche space of an organism, the more specialized the organism is. It
follows that, everything else being equal, generalists tend to be more
competitive than specialists. In this paper, we compare the outcome of
competition among generalists and specialists in a spatial versus a nonspatial
habitat in a heterogeneous environment. Generalists can utilize the entire
habitat, whereas specialists are restricted to their preferred habitat type. We
find that although competitiveness decreases with specialization, specialists
are more competitive in a spatial than in a nonspatial habitat as patchiness
increases.Comment: Published at http://dx.doi.org/10.1214/105051606000000394 in the
Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute
of Mathematical Statistics (http://www.imstat.org
Spatially explicit non-Mendelian diploid model
We introduce a spatially explicit model for the competition between type
and type alleles. Each vertex of the -dimensional integer lattice is
occupied by a diploid individual, which is in one of three possible states or
genotypes: , or . We are interested in the long-term behavior of
the gene frequencies when Mendel's law of segregation does not hold. This
results in a voter type model depending on four parameters; each of these
parameters measures the strength of competition between genes during meiosis.
We prove that with or without a spatial structure, type and type
alleles coexist at equilibrium when homozygotes are poor competitors. The
inclusion of a spatial structure, however, reduces the parameter region where
coexistence occurs.Comment: Published in at http://dx.doi.org/10.1214/09-AAP598 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Stochastic spatial models of host-pathogen and host-mutualist interactions I
Mutualists and pathogens, collectively called symbionts, are ubiquitous in
plant communities. While some symbionts are highly host-specific, others
associate with multiple hosts. The outcomes of multispecies host-symbiont
interactions with different degrees of specificity are difficult to predict at
this point due to a lack of a general conceptual framework. Complicating our
predictive power is the fact that plant populations are spatially explicit, and
we know from past research that explicit space can profoundly alter plant-plant
interactions. We introduce a spatially explicit, stochastic model to
investigate the role of explicit space and host-specificity in multispecies
host-symbiont interactions. We find that in our model, pathogens can
significantly alter the spatial structure of plant communities, promoting
coexistence, whereas mutualists appear to have only a limited effect. Effects
are more pronounced the more host-specific symbionts are.Comment: Published at http://dx.doi.org/10.1214/105051605000000782 in the
Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute
of Mathematical Statistics (http://www.imstat.org
Maullinia braseltonii sp. nov. (Rhizaria, Phytomyxea, Phagomyxida) : A Cyst-forming Parasite of the Bull Kelp Durvillaea spp. (Stramenopila, Phaeophyceae, Fucales)
Help in biomass collection by David J. Patiño (UACh), Liliana A. Muñoz (University of Aberdeen (UoA)) and Alexandra Mystikou (South Atlantic Environmental Research Institute & UoA), and in conducting electron microscopy by Gillian Milne (Aberdeen Microscopy Facility) is acknowledged. Thanks are due to the three anonymous reviewers, whose comments helped to improve the earlier version of this manuscript. PM was funded by Conicyt (BecasChile N° 72130422) for PhD studies at the University of Aberdeen, and by the NERC IOF Pump-priming (scheme NE/L013223/1) for activities at the Scottish Association for Marine Sciences. RW thanks financial support from Gobierno Regional de Los Lagos (projects FIC 2012 E7259-2 and FIC 2013 BIP30234872-0) and Fondef, Conicyt (HUAM AQ12I0010), which allows the sampling expeditions at Chiloe Island by David J. Patiño, Liliana Muñoz and PM. SN was funded by the Austrian Science Fund (FWF): grant J3175-B20 (Erwin Schrödinger Fellowship) and grant Y801-B16 (START-grant). PvW is supported by the UoA, BBSRC and NERC. Also, the MASTS pooling initiative (Marine Alliance for Science and Technology for Scotland, funded by the Scottish Funding Council and contributing institutions; grant reference HR09011) is gratefully acknowledged for its support to FCK. Finally, we would like to thank the UoA, Shackleton Fund (FCK) and the John Cheek Fund (FCK) for supporting the expeditions of Alexandra Mystikou, PvW and FCK to the Falkland Islands.Peer reviewedPublisher PD
Raman cooling and heating of two trapped Ba+ ions
We study cooling of the collective vibrational motion of two 138Ba+ ions
confined in an electrodynamic trap and irradiated with laser light close to the
resonances S_1/2-P_1/2 (493 nm) and P_1/2-D_3/2 (650 nm). The motional state of
the ions is monitored by a spatially resolving photo multiplier. Depending on
detuning and intensity of the cooling lasers, macroscopically different
motional states corresponding to different ion temperatures are observed. We
also derive the ions' temperature from detailed analytical calculations of
laser cooling taking into account the Zeeman structure of the energy levels
involved. The observed motional states perfectly match the calculated
temperatures. Significant heating is observed in the vicinity of the dark
resonances of the Zeeman-split S_1/2-D_3/2 Raman transitions. Here two-photon
processes dominate the interaction between lasers and ions. Parameter regimes
of laser light are identified that imply most efficient laser cooling.Comment: 8 pages, 5 figure
Error-resistant Single Qubit Gates with Trapped Ions
Coherent operations constitutive for the implementation of single and
multi-qubit quantum gates with trapped ions are demonstrated that are robust
against variations in experimental parameters and intrinsically indeterministic
system parameters. In particular, pulses developed using optimal control theory
are demonstrated for the first time with trapped ions. Their performance as a
function of error parameters is systematically investigated and compared to
composite pulses.Comment: 5 pages 5 figure
The Origin of Jovian Planets in Protostellar Disks: The Role of Dead Zones
The final masses of Jovian planets are attained when the tidal torques that
they exert on their surrounding protostellar disks are sufficient to open gaps
in the face of disk viscosity, thereby shutting off any further accretion. In
sufficiently well-ionized disks, the predominant form of disk viscosity
originates from the Magneto-Rotational Instability (MRI) that drives
hydromagnetic disk turbulence. In the region of sufficiently low ionization
rate -- the so-called dead zone -- turbulence is damped and we show that lower
mass planets will be formed. We considered three ionization sources (X-rays,
cosmic rays, and radioactive elements) and determined the size of a dead zone
for the total ionization rate by using a radiative, hydrostatic equilibrium
disk model developed by Chiang et al. (2001). We studied a range of surface
mass density (Sigma_{0}=10^3 - 10^5 g cm^{-2}) and X-ray energy (kT_{x}=1 - 10
keV). We also compared the ionization rate of such a disk by X-rays with cosmic
rays and find that the latter dominate X-rays in ionizing protostellar disks
unless the X-ray energy is very high (5 - 10 keV). Among our major conclusions
are that for typical conditions, dead zones encompass a region extending out to
several AU -- the region in which terrestrial planets are found in our solar
system. Our results suggest that the division between low and high mass planets
in exosolar planetary systems is a consequence of the presence of a dead zone
in their natal protoplanetary disks. We also find that the extent of a dead
zone is mainly dependent on the disk's surface mass density. Our results
provide further support for the idea that Jovian planets in exosolar systems
must have migrated substantially inwards from their points of origin.Comment: 28 pages, 10 figures, accepted by Ap
- …
