82,618 research outputs found

    Generating entangled photon pairs from a cavity-QED system

    Full text link
    We propose a scheme for the controlled generation of Einstein-Podosky-Rosen (EPR) entangled photon pairs from an atom coupled to a high Q optical cavity, extending the prototype system as a source for deterministic single photons. A thorough theoretical analysis confirms the promising operating conditions of our scheme as afforded by currently available experimental setups. Our result demonstrates the cavity QED system as an efficient and effective source for entangled photon pairs, and shines new light on its important role in quantum information science.Comment: It has recently come to our attention that the experiment by T. Wilk, S. C. Webster, A. Kuhn and G. Rempe, published in Science 317, 488 (2007), exactly realizes what we proposed in this article, which is published in Phy. Rev. A 040302(R) (2005

    Making vortices in dipolar spinor condensates via rapid adiabatic passage

    Full text link
    We propose to the create vortices in spin-1 condensates via magnetic dipole-dipole interaction. Starting with a polarized condensate prepared under large axial magnetic field, we show that by gradually inverting the field, population transfer among different spin states can be realized in a controlled manner. Under optimal condition, we generate a doubly quantized vortex state containing nearly all atoms in the condensate. The resulting vortex state is a direct manifestation of the dipole-dipole interaction and spin textures in spinor condensates. We also point out that the whole process can be qualitatively described by a simple rapid adiabatic passage model.Comment: 4 pages, 4 figure

    A simple solution of sound transmission through an elastic wall to a rectangular enclosure, including wall damping and air viscosity effects

    Get PDF
    A simple solution to the problem of the acoustical coupling between a rectangular structure, its air content, and an external noise source is presented. This solution is a mathematical expression for the normalized acoustic pressure inside the structure. Numerical results for the sound-pressure response for a specified set of parameters are also presented

    Graphene formed on SiC under various environments: Comparison of Si-face and C-face

    Full text link
    The morphology of graphene on SiC {0001} surfaces formed in various environments including ultra-high vacuum, 1 atm of argon, and 10^-6 to 10^-4 Torr of disilane is studied by atomic force microscopy, low-energy electron microscopy, and Raman spectroscopy. The graphene is formed by heating the surface to 1100 - 1600 C, which causes preferential sublimation of the Si atoms. The argon atmosphere or the background of disilane decreases the sublimation rate so that a higher graphitization temperature is required, thus improving the morphology of the films. For the (0001) surface, large areas of monolayer-thick graphene are formed in this way, with the size of these areas depending on the miscut of the sample. Results on the (000-1) surface are more complex. This surface graphitizes at a lower temperature than for the (0001) surface and consequently the growth is more three-dimensional. In an atmosphere of argon the morphology becomes even worse, with the surface displaying markedly inhomogeneous nucleation, an effect attributed to unintentional oxidation of the surface during graphitization. Use of a disilane environment for the (000-1) surface is found to produce improved morphology, with relatively large areas of monolayer-thick graphene.Comment: 22 pages, 11 figures, Proceedings of STEG-2 Conference; eliminated Figs. 4 and 7 from version 1, for brevity, and added Refs. 18, 29, 30, 31 together with associated discussio

    An quantum approach of measurement based on the Zurek's triple model

    Full text link
    In a close form without referring the time-dependent Hamiltonian to the total system, a consistent approach for quantum measurement is proposed based on Zurek's triple model of quantum decoherence [W.Zurek, Phys. Rev. D 24, 1516 (1981)]. An exactly-solvable model based on the intracavity system is dealt with in details to demonstrate the central idea in our approach: by peeling off one collective variable of the measuring apparatus from its many degrees of freedom, as the pointer of the apparatus, the collective variable de-couples with the internal environment formed by the effective internal variables, but still interacts with the measured system to form a triple entanglement among the measured system, the pointer and the internal environment. As another mechanism to cause decoherence, the uncertainty of relative phase and its many-particle amplification can be summed up to an ideal entanglement or an Shmidt decomposition with respect to the preferred basis.Comment: 22pages,3figure

    Observation of Landau quantization and standing waves in HfSiS

    Full text link
    Recently, HfSiS was found to be a new type of Dirac semimetal with a line of Dirac nodes in the band structure. Meanwhile, Rashba-split surface states are also pronounced in this compound. Here we report a systematic study of HfSiS by scanning tunneling microscopy/spectroscopy at low temperature and high magnetic field. The Rashba-split surface states are characterized by measuring Landau quantization and standing waves, which reveal a quasi-linear dispersive band structure. First-principles calculations based on density-functional theory are conducted and compared with the experimental results. Based on these investigations, the properties of the Rashba-split surface states and their interplay with defects and collective modes are discussed.Comment: 6 pages, 5 figure
    • …
    corecore